腹部成像换能器增强超声肿瘤治疗。

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Ryan G Morrison, Mrigendra B Karmacharya, Chandra M Sehgal
{"title":"腹部成像换能器增强超声肿瘤治疗。","authors":"Ryan G Morrison, Mrigendra B Karmacharya, Chandra M Sehgal","doi":"10.1115/1.4055112","DOIUrl":null,"url":null,"abstract":"<p><p>A diagnostic ultrasound machine add-on module (AOM) was created to enable an off-the-shelf abdominal imaging transducer to perform contrast-enhanced therapeutic ultrasound. The AOM creates plane-wave ultrasound through an abdominal imaging transducer targeting intravascular microbubbles within tumors. This therapeutic antivascular ultrasound (AVUS) causes heating and cavitation effects that destroy tumor vasculature and starves it of nutrients. The AOM can switch between therapeutic and imaging modes for monitoring AVUS treatment. The therapeutic capability of the AOM was validated in murine hepatocellular carcinomas (HCC) grown in adult mice. Contrast-enhanced ultrasound imaging performed before and after the therapeutic treatment evaluated the AVUS response to the treatment. The peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) were measured for the control and AOM treatment groups. The AOM group showed a substantial decrease in these parameters compared to the control group. The difference between the pre- and post-therapy was significant, (<i>p</i> < 0.001) for the AOM group and not significant (<i>p</i> > 0.5) for the control group. Tumor temperatures increased markedly for the AOM group with a thermal dose (CEM43) of 124.8 (±2.5). Histochemical analysis of the excised HCC samples revealed several hemorrhagic pools in tumors from the AOM group, absent in the tumors of the control group. These results demonstrate the theranostic potential of the AOM to induce and monitor vascular disruption within murine tumors.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445316/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrast-Enhanced Ultrasound Tumor Therapy With Abdominal Imaging Transducer.\",\"authors\":\"Ryan G Morrison, Mrigendra B Karmacharya, Chandra M Sehgal\",\"doi\":\"10.1115/1.4055112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A diagnostic ultrasound machine add-on module (AOM) was created to enable an off-the-shelf abdominal imaging transducer to perform contrast-enhanced therapeutic ultrasound. The AOM creates plane-wave ultrasound through an abdominal imaging transducer targeting intravascular microbubbles within tumors. This therapeutic antivascular ultrasound (AVUS) causes heating and cavitation effects that destroy tumor vasculature and starves it of nutrients. The AOM can switch between therapeutic and imaging modes for monitoring AVUS treatment. The therapeutic capability of the AOM was validated in murine hepatocellular carcinomas (HCC) grown in adult mice. Contrast-enhanced ultrasound imaging performed before and after the therapeutic treatment evaluated the AVUS response to the treatment. The peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) were measured for the control and AOM treatment groups. The AOM group showed a substantial decrease in these parameters compared to the control group. The difference between the pre- and post-therapy was significant, (<i>p</i> < 0.001) for the AOM group and not significant (<i>p</i> > 0.5) for the control group. Tumor temperatures increased markedly for the AOM group with a thermal dose (CEM43) of 124.8 (±2.5). Histochemical analysis of the excised HCC samples revealed several hemorrhagic pools in tumors from the AOM group, absent in the tumors of the control group. These results demonstrate the theranostic potential of the AOM to induce and monitor vascular disruption within murine tumors.</p>\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445316/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055112\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055112","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

一种诊断超声机附加模块(AOM)被创建,使现成的腹部成像换能器能够执行对比增强治疗超声。AOM通过腹部成像换能器产生针对肿瘤内血管内微泡的平面波超声。这种治疗性抗血管超声(AVUS)引起加热和空化效应,破坏肿瘤血管并使其缺乏营养。AOM可以在治疗和成像模式之间切换,以监测AVUS治疗。AOM在成年小鼠生长的小鼠肝细胞癌(HCC)中的治疗能力得到了验证。在治疗前后进行对比增强超声成像,评估AVUS对治疗的反应。测定对照组和AOM治疗组的峰值增强(PE)、灌注指数(PI)和曲线下面积(AUC)。与对照组相比,AOM组在这些参数上明显下降。对照组治疗前后差异有统计学意义(p < 0.05)。热剂量(CEM43)为124.8(±2.5)时,AOM组肿瘤温度明显升高。肝细胞癌切除标本的组织化学分析显示,AOM组肿瘤中有几个出血池,而对照组肿瘤中没有出血池。这些结果证明了AOM在诱导和监测小鼠肿瘤血管破坏方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrast-Enhanced Ultrasound Tumor Therapy With Abdominal Imaging Transducer.

A diagnostic ultrasound machine add-on module (AOM) was created to enable an off-the-shelf abdominal imaging transducer to perform contrast-enhanced therapeutic ultrasound. The AOM creates plane-wave ultrasound through an abdominal imaging transducer targeting intravascular microbubbles within tumors. This therapeutic antivascular ultrasound (AVUS) causes heating and cavitation effects that destroy tumor vasculature and starves it of nutrients. The AOM can switch between therapeutic and imaging modes for monitoring AVUS treatment. The therapeutic capability of the AOM was validated in murine hepatocellular carcinomas (HCC) grown in adult mice. Contrast-enhanced ultrasound imaging performed before and after the therapeutic treatment evaluated the AVUS response to the treatment. The peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) were measured for the control and AOM treatment groups. The AOM group showed a substantial decrease in these parameters compared to the control group. The difference between the pre- and post-therapy was significant, (p < 0.001) for the AOM group and not significant (p > 0.5) for the control group. Tumor temperatures increased markedly for the AOM group with a thermal dose (CEM43) of 124.8 (±2.5). Histochemical analysis of the excised HCC samples revealed several hemorrhagic pools in tumors from the AOM group, absent in the tumors of the control group. These results demonstrate the theranostic potential of the AOM to induce and monitor vascular disruption within murine tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信