胶质母细胞瘤多模态相关成像基因组数据的综合分析。

Rolando J Olivares, Arvind Rao, Jeffrey S Morris, Veerabhadran Baladandayuthapani
{"title":"胶质母细胞瘤多模态相关成像基因组数据的综合分析。","authors":"Rolando J Olivares,&nbsp;Arvind Rao,&nbsp;Jeffrey S Morris,&nbsp;Veerabhadran Baladandayuthapani","doi":"10.1109/GENSIPS.2013.6735914","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a method to integrate high-dimensional genomics datasets across multiple platforms with multiple imaging outcomes. This new statistical framework uses a hierarchical model to integrate biological relationships across platforms to identify genes that associate with multiple correlated imaging outcomes. Our two-stage hierarchical model uses the information shared across the platforms and thus increasing the predictive power to identify the relevant genes. We assess the performance of our proposed method through simulation and apply to data obtained from the Cancer Genome Atlas Glioblastoma Multiforme dataset. Our proposed method discovers multiple copy number and microRNA regulated genes that are related to patients' imaging outcomes in glioblastoma.</p>","PeriodicalId":73289,"journal":{"name":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"2013 ","pages":"5-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/GENSIPS.2013.6735914","citationCount":"2","resultStr":"{\"title\":\"Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma.\",\"authors\":\"Rolando J Olivares,&nbsp;Arvind Rao,&nbsp;Jeffrey S Morris,&nbsp;Veerabhadran Baladandayuthapani\",\"doi\":\"10.1109/GENSIPS.2013.6735914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a method to integrate high-dimensional genomics datasets across multiple platforms with multiple imaging outcomes. This new statistical framework uses a hierarchical model to integrate biological relationships across platforms to identify genes that associate with multiple correlated imaging outcomes. Our two-stage hierarchical model uses the information shared across the platforms and thus increasing the predictive power to identify the relevant genes. We assess the performance of our proposed method through simulation and apply to data obtained from the Cancer Genome Atlas Glioblastoma Multiforme dataset. Our proposed method discovers multiple copy number and microRNA regulated genes that are related to patients' imaging outcomes in glioblastoma.</p>\",\"PeriodicalId\":73289,\"journal\":{\"name\":\"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics\",\"volume\":\"2013 \",\"pages\":\"5-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/GENSIPS.2013.6735914\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSIPS.2013.6735914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种跨多个平台整合具有多种成像结果的高维基因组学数据集的方法。这个新的统计框架使用分层模型来整合跨平台的生物关系,以识别与多种相关成像结果相关的基因。我们的两阶段分层模型使用了跨平台共享的信息,从而提高了识别相关基因的预测能力。我们通过模拟评估我们提出的方法的性能,并应用于从癌症基因组图谱胶质母细胞瘤多形式数据集获得的数据。我们提出的方法发现了与胶质母细胞瘤患者影像学结果相关的多个拷贝数和microRNA调节基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma.

Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma.

Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma.

Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma.

We propose a method to integrate high-dimensional genomics datasets across multiple platforms with multiple imaging outcomes. This new statistical framework uses a hierarchical model to integrate biological relationships across platforms to identify genes that associate with multiple correlated imaging outcomes. Our two-stage hierarchical model uses the information shared across the platforms and thus increasing the predictive power to identify the relevant genes. We assess the performance of our proposed method through simulation and apply to data obtained from the Cancer Genome Atlas Glioblastoma Multiforme dataset. Our proposed method discovers multiple copy number and microRNA regulated genes that are related to patients' imaging outcomes in glioblastoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信