关于总体响应的子空间不变性。

Elaine Tring, Dario L Ringach
{"title":"关于总体响应的子空间不变性。","authors":"Elaine Tring,&nbsp;Dario L Ringach","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In cat visual cortex, the response of a neural population to the linear combination of two sinusoidal gratings (a plaid) can be well approximated by a weighted sum of the population responses to the individual gratings - a property we refer to as <i>subspace invariance</i>. We tested subspace invariance in mouse primary visual cortex by measuring the angle between the population response to a plaid and the plane spanned by the population responses to its individual components. We found robust violations of subspace invariance arising from a strong, negative correlation between the responses of neurons to individual gratings and their responses to the plaid. Contrast invariance, a special case of subspace invariance, also failed. The responses of some neurons decreased with increasing contrast, while others increased. Altogether the data show that subspace and contrast invariance do not hold in mouse primary visual cortex. These findings rule out some models of population coding, including vector averaging, some versions of normalization and temporal multiplexing.</p>","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065745/pdf/nihms-1052229.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Subspace Invariance of Population Responses.\",\"authors\":\"Elaine Tring,&nbsp;Dario L Ringach\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cat visual cortex, the response of a neural population to the linear combination of two sinusoidal gratings (a plaid) can be well approximated by a weighted sum of the population responses to the individual gratings - a property we refer to as <i>subspace invariance</i>. We tested subspace invariance in mouse primary visual cortex by measuring the angle between the population response to a plaid and the plane spanned by the population responses to its individual components. We found robust violations of subspace invariance arising from a strong, negative correlation between the responses of neurons to individual gratings and their responses to the plaid. Contrast invariance, a special case of subspace invariance, also failed. The responses of some neurons decreased with increasing contrast, while others increased. Altogether the data show that subspace and contrast invariance do not hold in mouse primary visual cortex. These findings rule out some models of population coding, including vector averaging, some versions of normalization and temporal multiplexing.</p>\",\"PeriodicalId\":74289,\"journal\":{\"name\":\"Neurons, behavior, data analysis and theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065745/pdf/nihms-1052229.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurons, behavior, data analysis and theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在猫的视觉皮层中,神经种群对两个正弦光栅(格子)线性组合的响应可以很好地近似为对单个光栅的种群响应的加权和-我们称之为子空间不变性。我们通过测量群体对格子的反应与群体对其各个组成部分的反应所跨越的平面之间的角度来测试小鼠初级视觉皮层的子空间不变性。我们发现,由于神经元对单个栅格的反应与其对格子的反应之间存在强烈的负相关关系,因此存在对子空间不变性的强大违反。对比不变性,一种特殊的子空间不变性,也失败了。一些神经元的反应随着对比度的增加而降低,而另一些神经元的反应则增加。总之,这些数据表明,子空间和对比度不变性在小鼠初级视觉皮层中不成立。这些发现排除了一些人口编码模型,包括向量平均,某些版本的归一化和时间复用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Subspace Invariance of Population Responses.

On the Subspace Invariance of Population Responses.

On the Subspace Invariance of Population Responses.

In cat visual cortex, the response of a neural population to the linear combination of two sinusoidal gratings (a plaid) can be well approximated by a weighted sum of the population responses to the individual gratings - a property we refer to as subspace invariance. We tested subspace invariance in mouse primary visual cortex by measuring the angle between the population response to a plaid and the plane spanned by the population responses to its individual components. We found robust violations of subspace invariance arising from a strong, negative correlation between the responses of neurons to individual gratings and their responses to the plaid. Contrast invariance, a special case of subspace invariance, also failed. The responses of some neurons decreased with increasing contrast, while others increased. Altogether the data show that subspace and contrast invariance do not hold in mouse primary visual cortex. These findings rule out some models of population coding, including vector averaging, some versions of normalization and temporal multiplexing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信