{"title":"iACP-GE:利用梯度增强决策树和额外树对抗癌肽进行准确鉴定。","authors":"Y Liang, X Ma","doi":"10.1080/1062936X.2022.2160011","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the main diseases threatening human life, accounting for millions of deaths around the world each year. Traditional physical and chemical methods for cancer treatment are extremely time-consuming, lab-intensive, expensive, inefficient and difficult to be applied in a high-throughput way. Hence, it is an urgent task to develop automated computational methods to enable fast and accurate identification of anticancer peptides (ACPs). In this paper, we develop a novel model named iACP-GE to identify ACPs. Multi-features are extracted by using binary encoding, enhanced grouped amino acid composition and BLOSUM62 encoding based on the N5C5 sequence, as well as detrended forward moving-average auto-cross correlation analysis based on physicochemical properties of 20 natural amino acids. Thus, 835 features are obtained for each sample, in order to avoid information redundancy, gradient boosting decision tree was adopted as the feature selection strategy. Then, the optimal feature subset is input to the extra tree classifier. The accuracies of ACP740 and ACP240 datasets with the 5-fold cross-validation were 90.54% and 91.25%, respectively. Experimental results indicate that iACP-GE significantly outperforms several existing models on ACP740 and ACP240 datasets and can be used as an effective tool for the identification of ACPs. The datasets and source codes for iACP-GE are available at https://github.com/yunyunliang88/iACP-GE.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 1","pages":"1-19"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.\",\"authors\":\"Y Liang, X Ma\",\"doi\":\"10.1080/1062936X.2022.2160011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is one of the main diseases threatening human life, accounting for millions of deaths around the world each year. Traditional physical and chemical methods for cancer treatment are extremely time-consuming, lab-intensive, expensive, inefficient and difficult to be applied in a high-throughput way. Hence, it is an urgent task to develop automated computational methods to enable fast and accurate identification of anticancer peptides (ACPs). In this paper, we develop a novel model named iACP-GE to identify ACPs. Multi-features are extracted by using binary encoding, enhanced grouped amino acid composition and BLOSUM62 encoding based on the N5C5 sequence, as well as detrended forward moving-average auto-cross correlation analysis based on physicochemical properties of 20 natural amino acids. Thus, 835 features are obtained for each sample, in order to avoid information redundancy, gradient boosting decision tree was adopted as the feature selection strategy. Then, the optimal feature subset is input to the extra tree classifier. The accuracies of ACP740 and ACP240 datasets with the 5-fold cross-validation were 90.54% and 91.25%, respectively. Experimental results indicate that iACP-GE significantly outperforms several existing models on ACP740 and ACP240 datasets and can be used as an effective tool for the identification of ACPs. The datasets and source codes for iACP-GE are available at https://github.com/yunyunliang88/iACP-GE.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"34 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2022.2160011\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2160011","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.
Cancer is one of the main diseases threatening human life, accounting for millions of deaths around the world each year. Traditional physical and chemical methods for cancer treatment are extremely time-consuming, lab-intensive, expensive, inefficient and difficult to be applied in a high-throughput way. Hence, it is an urgent task to develop automated computational methods to enable fast and accurate identification of anticancer peptides (ACPs). In this paper, we develop a novel model named iACP-GE to identify ACPs. Multi-features are extracted by using binary encoding, enhanced grouped amino acid composition and BLOSUM62 encoding based on the N5C5 sequence, as well as detrended forward moving-average auto-cross correlation analysis based on physicochemical properties of 20 natural amino acids. Thus, 835 features are obtained for each sample, in order to avoid information redundancy, gradient boosting decision tree was adopted as the feature selection strategy. Then, the optimal feature subset is input to the extra tree classifier. The accuracies of ACP740 and ACP240 datasets with the 5-fold cross-validation were 90.54% and 91.25%, respectively. Experimental results indicate that iACP-GE significantly outperforms several existing models on ACP740 and ACP240 datasets and can be used as an effective tool for the identification of ACPs. The datasets and source codes for iACP-GE are available at https://github.com/yunyunliang88/iACP-GE.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.