{"title":"eneletin通过激活新生小鼠ppar - γ改善七氟醚诱导的认知障碍。","authors":"Su Jiang, Ying Xiong, Xinyan Wang","doi":"10.1111/neup.12905","DOIUrl":null,"url":null,"abstract":"<p><p>Sevoflurane (SEV) is a commonly used anesthetic in pediatric surgery. Recent studies reported that repeated use of SEV contributes to cognitive impairment. Engeletin has been discovered to exert anti-inflammatory effects in various diseases. However, the detailed roles and mechanisms of engeletin in SEV-induced cognitive dysfunction of neonatal mice remain unclear. In this study, C57BL/6 neonatal mice were randomly divided into Ctrl, SEV, SEV + Engeletin (10 mg /kg), SEV + Engeletin (20 mg/kg), and SEV + Engeletin (40 mg/kg) groups. The Morris water maze (MWM) test suggested that engeletin treatment significantly improved SEV-induced cognitive impairment in neonatal mice. Employing ELISA and Nissl staining analysis, engeletin reduced neuroinflammation and loss of nerve cells caused by SEV, respectively. The treatment of engeletin dramatically suppressed the activation of microglia and apoptosis induced by SEV in the hippocampus of neonatal mice. Furthermore, the inhibition of PPAR-γ obviously reversed the abovementioned effects of engeletin in the hippocampus of newborn mice. In conclusion, this study verified that engeletin notably ameliorated SEV-induced cognitive deficiencies in neonatal mice at least partially by mediating the expression of PPAR-γ.</p>","PeriodicalId":19204,"journal":{"name":"Neuropathology","volume":" ","pages":"431-440"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engeletin ameliorates sevoflurane-induced cognitive impairment by activating PPAR-gamma in neonatal mice.\",\"authors\":\"Su Jiang, Ying Xiong, Xinyan Wang\",\"doi\":\"10.1111/neup.12905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sevoflurane (SEV) is a commonly used anesthetic in pediatric surgery. Recent studies reported that repeated use of SEV contributes to cognitive impairment. Engeletin has been discovered to exert anti-inflammatory effects in various diseases. However, the detailed roles and mechanisms of engeletin in SEV-induced cognitive dysfunction of neonatal mice remain unclear. In this study, C57BL/6 neonatal mice were randomly divided into Ctrl, SEV, SEV + Engeletin (10 mg /kg), SEV + Engeletin (20 mg/kg), and SEV + Engeletin (40 mg/kg) groups. The Morris water maze (MWM) test suggested that engeletin treatment significantly improved SEV-induced cognitive impairment in neonatal mice. Employing ELISA and Nissl staining analysis, engeletin reduced neuroinflammation and loss of nerve cells caused by SEV, respectively. The treatment of engeletin dramatically suppressed the activation of microglia and apoptosis induced by SEV in the hippocampus of neonatal mice. Furthermore, the inhibition of PPAR-γ obviously reversed the abovementioned effects of engeletin in the hippocampus of newborn mice. In conclusion, this study verified that engeletin notably ameliorated SEV-induced cognitive deficiencies in neonatal mice at least partially by mediating the expression of PPAR-γ.</p>\",\"PeriodicalId\":19204,\"journal\":{\"name\":\"Neuropathology\",\"volume\":\" \",\"pages\":\"431-440\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/neup.12905\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/neup.12905","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Engeletin ameliorates sevoflurane-induced cognitive impairment by activating PPAR-gamma in neonatal mice.
Sevoflurane (SEV) is a commonly used anesthetic in pediatric surgery. Recent studies reported that repeated use of SEV contributes to cognitive impairment. Engeletin has been discovered to exert anti-inflammatory effects in various diseases. However, the detailed roles and mechanisms of engeletin in SEV-induced cognitive dysfunction of neonatal mice remain unclear. In this study, C57BL/6 neonatal mice were randomly divided into Ctrl, SEV, SEV + Engeletin (10 mg /kg), SEV + Engeletin (20 mg/kg), and SEV + Engeletin (40 mg/kg) groups. The Morris water maze (MWM) test suggested that engeletin treatment significantly improved SEV-induced cognitive impairment in neonatal mice. Employing ELISA and Nissl staining analysis, engeletin reduced neuroinflammation and loss of nerve cells caused by SEV, respectively. The treatment of engeletin dramatically suppressed the activation of microglia and apoptosis induced by SEV in the hippocampus of neonatal mice. Furthermore, the inhibition of PPAR-γ obviously reversed the abovementioned effects of engeletin in the hippocampus of newborn mice. In conclusion, this study verified that engeletin notably ameliorated SEV-induced cognitive deficiencies in neonatal mice at least partially by mediating the expression of PPAR-γ.
期刊介绍:
Neuropathology is an international journal sponsored by the Japanese Society of Neuropathology and publishes peer-reviewed original papers dealing with all aspects of human and experimental neuropathology and related fields of research. The Journal aims to promote the international exchange of results and encourages authors from all countries to submit papers in the following categories: Original Articles, Case Reports, Short Communications, Occasional Reviews, Editorials and Letters to the Editor. All articles are peer-reviewed by at least two researchers expert in the field of the submitted paper.