{"title":"木裂芽孢杆菌菌株TW1的一种C1/ c4氧化性AA10裂解多糖单加氧酶。","authors":"Daichi Ito, Shuichi Karita, Midori Umekawa","doi":"10.5458/jag.jag.JAG-2022_0011","DOIUrl":null,"url":null,"abstract":"<p><p>Lytic polysaccharide monooxygenases (LPMO) are key enzymes for the efficient degradation of lignocellulose biomass with cellulases. A lignocellulose-degradative strain, <i>Paenibacillus xylaniclasticus</i> TW1, has LPMO-encoding <i>Px</i>AA10A gene. Neither the C1/C4-oxidizing selectivity nor the enzyme activity of <i>Px</i>AA10A has ever been characterized. In this study, the C1/C4-oxidizing selectivity of <i>Px</i>AA10A and the boosting effect for cellulose degradation with a cellulase cocktail were investigated. The full-length <i>Px</i>AA10A (r<i>Px</i>AA10A) and the catalytic domain (r<i>Px</i>AA10A-CD) were heterologously expressed in <i>Escherichia coli</i> and purified. To identify the C1/C4-oxidizing selectivity of <i>Px</i>AA10A, cellohexaose was used as a substrate with the use of r<i>Px</i>AA10A-CD, and the products were analyzed by MALDI-TOF/MS. As a result, aldonic acid cellotetraose and cellotetraose, the products from C1-oxidization and C4-oxidization, respectively, were detected. These results indicate that <i>Px</i>AA10A is a C1/C4-oxidizing LPMO. It was also found that the addition of r<i>Px</i>AA10A into a cellulase cocktail enhanced the cellulose-degradation efficiency.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"39-42"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/4f/70_jag.JAG-2022_0011.PMC10074029.pdf","citationCount":"0","resultStr":"{\"title\":\"A C1/C4-Oxidizing AA10 Lytic Polysaccharide Monooxygenase from <i>Paenibacillus xylaniclasticus</i> Strain TW1.\",\"authors\":\"Daichi Ito, Shuichi Karita, Midori Umekawa\",\"doi\":\"10.5458/jag.jag.JAG-2022_0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lytic polysaccharide monooxygenases (LPMO) are key enzymes for the efficient degradation of lignocellulose biomass with cellulases. A lignocellulose-degradative strain, <i>Paenibacillus xylaniclasticus</i> TW1, has LPMO-encoding <i>Px</i>AA10A gene. Neither the C1/C4-oxidizing selectivity nor the enzyme activity of <i>Px</i>AA10A has ever been characterized. In this study, the C1/C4-oxidizing selectivity of <i>Px</i>AA10A and the boosting effect for cellulose degradation with a cellulase cocktail were investigated. The full-length <i>Px</i>AA10A (r<i>Px</i>AA10A) and the catalytic domain (r<i>Px</i>AA10A-CD) were heterologously expressed in <i>Escherichia coli</i> and purified. To identify the C1/C4-oxidizing selectivity of <i>Px</i>AA10A, cellohexaose was used as a substrate with the use of r<i>Px</i>AA10A-CD, and the products were analyzed by MALDI-TOF/MS. As a result, aldonic acid cellotetraose and cellotetraose, the products from C1-oxidization and C4-oxidization, respectively, were detected. These results indicate that <i>Px</i>AA10A is a C1/C4-oxidizing LPMO. It was also found that the addition of r<i>Px</i>AA10A into a cellulase cocktail enhanced the cellulose-degradation efficiency.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":\"70 1\",\"pages\":\"39-42\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/4f/70_jag.JAG-2022_0011.PMC10074029.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2022_0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2022_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A C1/C4-Oxidizing AA10 Lytic Polysaccharide Monooxygenase from Paenibacillus xylaniclasticus Strain TW1.
Lytic polysaccharide monooxygenases (LPMO) are key enzymes for the efficient degradation of lignocellulose biomass with cellulases. A lignocellulose-degradative strain, Paenibacillus xylaniclasticus TW1, has LPMO-encoding PxAA10A gene. Neither the C1/C4-oxidizing selectivity nor the enzyme activity of PxAA10A has ever been characterized. In this study, the C1/C4-oxidizing selectivity of PxAA10A and the boosting effect for cellulose degradation with a cellulase cocktail were investigated. The full-length PxAA10A (rPxAA10A) and the catalytic domain (rPxAA10A-CD) were heterologously expressed in Escherichia coli and purified. To identify the C1/C4-oxidizing selectivity of PxAA10A, cellohexaose was used as a substrate with the use of rPxAA10A-CD, and the products were analyzed by MALDI-TOF/MS. As a result, aldonic acid cellotetraose and cellotetraose, the products from C1-oxidization and C4-oxidization, respectively, were detected. These results indicate that PxAA10A is a C1/C4-oxidizing LPMO. It was also found that the addition of rPxAA10A into a cellulase cocktail enhanced the cellulose-degradation efficiency.