{"title":"高效、精确、安全的广义编辑距离及其超越。","authors":"Ruiyu Zhu, Yan Huang","doi":"10.1109/tdsc.2020.2984219","DOIUrl":null,"url":null,"abstract":"<p><p>Secure string-comparison by some non-linear metrics such as edit-distance and its variations is an important building block of many applications including patient genome matching and text-based intrusion detection. Despite the significance of these string metrics, computing them in a provably secure manner is very expensive. In this paper, we improve the performance of secure computation of these string metrics without sacrificing security, generality, composability, and accuracy. We explore a new design methodology that allows us to reduce the asymptotic cost by a factor of <i>O</i>(log <i>n</i>) (where <i>n</i> denotes the input string length). In our experiments, we observe up to an order-of-magnitude savings in time and bandwidth compared to the best prior results. We extended our semi-honest protocols to work in the malicious model, which is by-far the most efficient actively-secure protocols for computing these string metrics.</p>","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"19 1","pages":"579-590"},"PeriodicalIF":7.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/tdsc.2020.2984219","citationCount":"5","resultStr":"{\"title\":\"Efficient and Precise Secure Generalized Edit Distance and Beyond.\",\"authors\":\"Ruiyu Zhu, Yan Huang\",\"doi\":\"10.1109/tdsc.2020.2984219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Secure string-comparison by some non-linear metrics such as edit-distance and its variations is an important building block of many applications including patient genome matching and text-based intrusion detection. Despite the significance of these string metrics, computing them in a provably secure manner is very expensive. In this paper, we improve the performance of secure computation of these string metrics without sacrificing security, generality, composability, and accuracy. We explore a new design methodology that allows us to reduce the asymptotic cost by a factor of <i>O</i>(log <i>n</i>) (where <i>n</i> denotes the input string length). In our experiments, we observe up to an order-of-magnitude savings in time and bandwidth compared to the best prior results. We extended our semi-honest protocols to work in the malicious model, which is by-far the most efficient actively-secure protocols for computing these string metrics.</p>\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"19 1\",\"pages\":\"579-590\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/tdsc.2020.2984219\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2020.2984219\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2020.2984219","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Efficient and Precise Secure Generalized Edit Distance and Beyond.
Secure string-comparison by some non-linear metrics such as edit-distance and its variations is an important building block of many applications including patient genome matching and text-based intrusion detection. Despite the significance of these string metrics, computing them in a provably secure manner is very expensive. In this paper, we improve the performance of secure computation of these string metrics without sacrificing security, generality, composability, and accuracy. We explore a new design methodology that allows us to reduce the asymptotic cost by a factor of O(log n) (where n denotes the input string length). In our experiments, we observe up to an order-of-magnitude savings in time and bandwidth compared to the best prior results. We extended our semi-honest protocols to work in the malicious model, which is by-far the most efficient actively-secure protocols for computing these string metrics.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.