Jakša Vukojević, Damir Mulc, Ivana Kinder, Eda Jovičić, Krešimir Friganović, Aleksandar Savić, Mario Cifrek, Domagoj Vidović
{"title":"边缘和抑郁:一条细脑电图线。","authors":"Jakša Vukojević, Damir Mulc, Ivana Kinder, Eda Jovičić, Krešimir Friganović, Aleksandar Savić, Mario Cifrek, Domagoj Vidović","doi":"10.1177/15500594211060830","DOIUrl":null,"url":null,"abstract":"<p><p>In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borderline and Depression: A Thin EEG Line.\",\"authors\":\"Jakša Vukojević, Damir Mulc, Ivana Kinder, Eda Jovičić, Krešimir Friganović, Aleksandar Savić, Mario Cifrek, Domagoj Vidović\",\"doi\":\"10.1177/15500594211060830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594211060830\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594211060830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.