Benjamin C Conner, Alyssa M Spomer, Katherine M Steele, Zachary F Lerner
{"title":"影响脑瘫患者使用机器人踝关节外骨骼步态训练的神经肌肉反应的因素。","authors":"Benjamin C Conner, Alyssa M Spomer, Katherine M Steele, Zachary F Lerner","doi":"10.1080/10400435.2022.2121324","DOIUrl":null,"url":null,"abstract":"<p><p>A current limitation in the development of robotic gait training interventions is understanding the factors that predict responses to treatment. The purpose of this study was to explore the application of an interpretable machine learning method, Bayesian Additive Regression Trees (BART), to identify factors influencing neuromuscular responses to a resistive ankle exoskeleton in individuals with cerebral palsy (CP). Eight individuals with CP (GMFCS levels I - III, ages 12-18 years) walked with a resistive ankle exoskeleton over seven visits while we measured soleus activation. A BART model was developed using a predictor set of kinematic, device, study, and participant metrics that were hypothesized to influence soleus activation. The model (<i>R</i><sup><i>2</i></sup> = 0.94) found that kinematics had the largest influence on soleus activation, but the magnitude of exoskeleton resistance, amount of gait training practice with the device, and participant-level parameters also had substantial effects. To optimize neuromuscular engagement during exoskeleton training in individuals with CP, our analysis highlights the importance of monitoring the user's kinematic response, in particular, peak stance phase hip flexion and ankle dorsiflexion. We demonstrate the utility of machine learning techniques for enhancing our understanding of robotic gait training outcomes, seeking to improve the efficacy of future interventions.</p>","PeriodicalId":51568,"journal":{"name":"Assistive Technology","volume":" ","pages":"463-470"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Factors influencing neuromuscular responses to gait training with a robotic ankle exoskeleton in cerebral palsy.\",\"authors\":\"Benjamin C Conner, Alyssa M Spomer, Katherine M Steele, Zachary F Lerner\",\"doi\":\"10.1080/10400435.2022.2121324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A current limitation in the development of robotic gait training interventions is understanding the factors that predict responses to treatment. The purpose of this study was to explore the application of an interpretable machine learning method, Bayesian Additive Regression Trees (BART), to identify factors influencing neuromuscular responses to a resistive ankle exoskeleton in individuals with cerebral palsy (CP). Eight individuals with CP (GMFCS levels I - III, ages 12-18 years) walked with a resistive ankle exoskeleton over seven visits while we measured soleus activation. A BART model was developed using a predictor set of kinematic, device, study, and participant metrics that were hypothesized to influence soleus activation. The model (<i>R</i><sup><i>2</i></sup> = 0.94) found that kinematics had the largest influence on soleus activation, but the magnitude of exoskeleton resistance, amount of gait training practice with the device, and participant-level parameters also had substantial effects. To optimize neuromuscular engagement during exoskeleton training in individuals with CP, our analysis highlights the importance of monitoring the user's kinematic response, in particular, peak stance phase hip flexion and ankle dorsiflexion. We demonstrate the utility of machine learning techniques for enhancing our understanding of robotic gait training outcomes, seeking to improve the efficacy of future interventions.</p>\",\"PeriodicalId\":51568,\"journal\":{\"name\":\"Assistive Technology\",\"volume\":\" \",\"pages\":\"463-470\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assistive Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10400435.2022.2121324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assistive Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10400435.2022.2121324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
Factors influencing neuromuscular responses to gait training with a robotic ankle exoskeleton in cerebral palsy.
A current limitation in the development of robotic gait training interventions is understanding the factors that predict responses to treatment. The purpose of this study was to explore the application of an interpretable machine learning method, Bayesian Additive Regression Trees (BART), to identify factors influencing neuromuscular responses to a resistive ankle exoskeleton in individuals with cerebral palsy (CP). Eight individuals with CP (GMFCS levels I - III, ages 12-18 years) walked with a resistive ankle exoskeleton over seven visits while we measured soleus activation. A BART model was developed using a predictor set of kinematic, device, study, and participant metrics that were hypothesized to influence soleus activation. The model (R2 = 0.94) found that kinematics had the largest influence on soleus activation, but the magnitude of exoskeleton resistance, amount of gait training practice with the device, and participant-level parameters also had substantial effects. To optimize neuromuscular engagement during exoskeleton training in individuals with CP, our analysis highlights the importance of monitoring the user's kinematic response, in particular, peak stance phase hip flexion and ankle dorsiflexion. We demonstrate the utility of machine learning techniques for enhancing our understanding of robotic gait training outcomes, seeking to improve the efficacy of future interventions.
期刊介绍:
Assistive Technology is an applied, scientific publication in the multi-disciplinary field of technology for people with disabilities. The journal"s purpose is to foster communication among individuals working in all aspects of the assistive technology arena including researchers, developers, clinicians, educators and consumers. The journal will consider papers from all assistive technology applications. Only original papers will be accepted. Technical notes describing preliminary techniques, procedures, or findings of original scientific research may also be submitted. Letters to the Editor are welcome. Books for review may be sent to authors or publisher.