深度学习模型与简单方法的比较,以评估抗菌肽预测问题。

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Molecular Informatics Pub Date : 2024-05-01 Epub Date: 2023-04-07 DOI:10.1002/minf.202200181
M Y Lobanov, M V Slizen, N V Dovidchenko, A V Panfilov, A A Surin, I V Likhachev, O V Galzitskaya
{"title":"深度学习模型与简单方法的比较,以评估抗菌肽预测问题。","authors":"M Y Lobanov, M V Slizen, N V Dovidchenko, A V Panfilov, A A Surin, I V Likhachev, O V Galzitskaya","doi":"10.1002/minf.202200181","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic-resistant strains are an emerging threat to public health. The usage of antimicrobial peptides (AMPs) is one of the promising approaches to solve this problem. For the development of new AMPs, it is necessary to have reliable prediction methods. Recently, deep learning approaches have been used to predict AMP. In this paper, we want to compare simple and complex methods for these purposes. We used the BERT transformer to create sequence embeddings and the multilayer perceptron (MLP) and light attention (LA) approaches for classification. One of them reached about 80 % accuracy and specificity in benchmark testing, which is on par with the best available methods. For comparison, we proposed a simple method using only the amino acid composition of proteins or peptides. This method has shown good results, at the level of the best methods. We have prepared a special server for predicting the ability of AMPs by amino acid composition: http://bioproteom.protres.ru/antimicrob/.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202200181"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.\",\"authors\":\"M Y Lobanov, M V Slizen, N V Dovidchenko, A V Panfilov, A A Surin, I V Likhachev, O V Galzitskaya\",\"doi\":\"10.1002/minf.202200181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic-resistant strains are an emerging threat to public health. The usage of antimicrobial peptides (AMPs) is one of the promising approaches to solve this problem. For the development of new AMPs, it is necessary to have reliable prediction methods. Recently, deep learning approaches have been used to predict AMP. In this paper, we want to compare simple and complex methods for these purposes. We used the BERT transformer to create sequence embeddings and the multilayer perceptron (MLP) and light attention (LA) approaches for classification. One of them reached about 80 % accuracy and specificity in benchmark testing, which is on par with the best available methods. For comparison, we proposed a simple method using only the amino acid composition of proteins or peptides. This method has shown good results, at the level of the best methods. We have prepared a special server for predicting the ability of AMPs by amino acid composition: http://bioproteom.protres.ru/antimicrob/.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202200181\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202200181\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200181","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药菌株是公共卫生面临的一个新威胁。使用抗菌肽(AMPs)是解决这一问题的可行方法之一。要开发新的抗菌肽,必须有可靠的预测方法。最近,深度学习方法被用于预测 AMP。在本文中,我们希望对简单方法和复杂方法进行比较。我们使用 BERT 变换器创建序列嵌入,并使用多层感知器 (MLP) 和轻注意力 (LA) 方法进行分类。其中一种方法在基准测试中达到了约 80% 的准确率和特异性,与现有的最佳方法相当。为了进行比较,我们提出了一种仅使用蛋白质或肽的氨基酸组成的简单方法。这种方法显示出良好的效果,达到了最佳方法的水平。我们准备了一个专门的服务器,用于通过氨基酸组成预测 AMP 的能力:http://bioproteom.protres.ru/antimicrob/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.

Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.

Antibiotic-resistant strains are an emerging threat to public health. The usage of antimicrobial peptides (AMPs) is one of the promising approaches to solve this problem. For the development of new AMPs, it is necessary to have reliable prediction methods. Recently, deep learning approaches have been used to predict AMP. In this paper, we want to compare simple and complex methods for these purposes. We used the BERT transformer to create sequence embeddings and the multilayer perceptron (MLP) and light attention (LA) approaches for classification. One of them reached about 80 % accuracy and specificity in benchmark testing, which is on par with the best available methods. For comparison, we proposed a simple method using only the amino acid composition of proteins or peptides. This method has shown good results, at the level of the best methods. We have prepared a special server for predicting the ability of AMPs by amino acid composition: http://bioproteom.protres.ru/antimicrob/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信