Ali Sanaeifar, Saeid Eslami, Mitra Ahadi, Mohsen Kahani, Hassan Vakili Arki
{"title":"DxGenerator:基于元地图和语义推理的初级保健改进鉴别诊断生成器。","authors":"Ali Sanaeifar, Saeid Eslami, Mitra Ahadi, Mohsen Kahani, Hassan Vakili Arki","doi":"10.1055/a-1905-5639","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, researchers have used many computerized interventions to reduce medical errors, the third cause of death in developed countries. One of such interventions is using differential diagnosis generators in primary care, where physicians may encounter initial symptoms without any diagnostic presuppositions. These systems generate multiple diagnoses, ranked by their likelihood. As such, these reports' accuracy can be determined by the location of the correct diagnosis in the list.</p><p><strong>Objective: </strong>This study aimed to design and evaluate a novel practical web-based differential diagnosis generator solution in primary care.</p><p><strong>Methods: </strong>In this research, a new online clinical decision support system, called DxGenerator, was designed to improve diagnostic accuracy; to this end, an attempt was made to converge a semantic database with the unified medical language system (UMLS) knowledge base, using MetaMap tool and natural language processing. In this regard, 120 diseases of gastrointestinal organs causing abdominal pain were modeled into the database. After designing an inference engine and a pseudo-free-text interactive interface, 172 patient vignettes were inputted into DxGenerator and ISABEL, the most accurate similar system. The Wilcoxon signed ranked test was used to compare the position of correct diagnoses in DxGenerator and ISABEL. The α level was defined as 0.05.</p><p><strong>Results: </strong>On a total of 172 vignettes, the mean and standard deviation of correct diagnosis positions improved from 4.2 ± 5.3 in ISABEL to 3.2 ± 3.9 in DxGenerator. This improvement was significant in the subgroup of uncommon diseases (<i>p</i>-value < 0.05).</p><p><strong>Conclusion: </strong>Using UMLS knowledge base and MetaMap Tools can improve the accuracy of diagnostic systems in which terms are entered in a free text manner. Applying these new methods will help the medical community accept medical diagnostic systems better.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"61 5-06","pages":"174-184"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DxGenerator: An Improved Differential Diagnosis Generator for Primary Care Based on MetaMap and Semantic Reasoning.\",\"authors\":\"Ali Sanaeifar, Saeid Eslami, Mitra Ahadi, Mohsen Kahani, Hassan Vakili Arki\",\"doi\":\"10.1055/a-1905-5639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In recent years, researchers have used many computerized interventions to reduce medical errors, the third cause of death in developed countries. One of such interventions is using differential diagnosis generators in primary care, where physicians may encounter initial symptoms without any diagnostic presuppositions. These systems generate multiple diagnoses, ranked by their likelihood. As such, these reports' accuracy can be determined by the location of the correct diagnosis in the list.</p><p><strong>Objective: </strong>This study aimed to design and evaluate a novel practical web-based differential diagnosis generator solution in primary care.</p><p><strong>Methods: </strong>In this research, a new online clinical decision support system, called DxGenerator, was designed to improve diagnostic accuracy; to this end, an attempt was made to converge a semantic database with the unified medical language system (UMLS) knowledge base, using MetaMap tool and natural language processing. In this regard, 120 diseases of gastrointestinal organs causing abdominal pain were modeled into the database. After designing an inference engine and a pseudo-free-text interactive interface, 172 patient vignettes were inputted into DxGenerator and ISABEL, the most accurate similar system. The Wilcoxon signed ranked test was used to compare the position of correct diagnoses in DxGenerator and ISABEL. The α level was defined as 0.05.</p><p><strong>Results: </strong>On a total of 172 vignettes, the mean and standard deviation of correct diagnosis positions improved from 4.2 ± 5.3 in ISABEL to 3.2 ± 3.9 in DxGenerator. This improvement was significant in the subgroup of uncommon diseases (<i>p</i>-value < 0.05).</p><p><strong>Conclusion: </strong>Using UMLS knowledge base and MetaMap Tools can improve the accuracy of diagnostic systems in which terms are entered in a free text manner. Applying these new methods will help the medical community accept medical diagnostic systems better.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"61 5-06\",\"pages\":\"174-184\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1905-5639\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1905-5639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DxGenerator: An Improved Differential Diagnosis Generator for Primary Care Based on MetaMap and Semantic Reasoning.
Background: In recent years, researchers have used many computerized interventions to reduce medical errors, the third cause of death in developed countries. One of such interventions is using differential diagnosis generators in primary care, where physicians may encounter initial symptoms without any diagnostic presuppositions. These systems generate multiple diagnoses, ranked by their likelihood. As such, these reports' accuracy can be determined by the location of the correct diagnosis in the list.
Objective: This study aimed to design and evaluate a novel practical web-based differential diagnosis generator solution in primary care.
Methods: In this research, a new online clinical decision support system, called DxGenerator, was designed to improve diagnostic accuracy; to this end, an attempt was made to converge a semantic database with the unified medical language system (UMLS) knowledge base, using MetaMap tool and natural language processing. In this regard, 120 diseases of gastrointestinal organs causing abdominal pain were modeled into the database. After designing an inference engine and a pseudo-free-text interactive interface, 172 patient vignettes were inputted into DxGenerator and ISABEL, the most accurate similar system. The Wilcoxon signed ranked test was used to compare the position of correct diagnoses in DxGenerator and ISABEL. The α level was defined as 0.05.
Results: On a total of 172 vignettes, the mean and standard deviation of correct diagnosis positions improved from 4.2 ± 5.3 in ISABEL to 3.2 ± 3.9 in DxGenerator. This improvement was significant in the subgroup of uncommon diseases (p-value < 0.05).
Conclusion: Using UMLS knowledge base and MetaMap Tools can improve the accuracy of diagnostic systems in which terms are entered in a free text manner. Applying these new methods will help the medical community accept medical diagnostic systems better.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.