{"title":"具有源项的一阶拟线性方程的稳态轮廓图的收敛性","authors":"Alain Yves Le Roux, Marie Noëlle Le Roux","doi":"10.1016/S0764-4442(01)01975-9","DOIUrl":null,"url":null,"abstract":"<div><p>When a source term is present, the constants are no longer solutions to quasilinear equations. Some numerical techniques based on this property need to be generalized. A stationary profile scheme uses an approximate solution made of stationary solutions in each cell. We propose such a scheme, for which we prove some results of stability and convergence towards the entropy solution. The numerical tests show that this scheme is well adapted to the simulation of well balanced states, and often far better than the usual splitting methods.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 703-706"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01975-9","citationCount":"7","resultStr":"{\"title\":\"Convergence d'un schéma à profils stationnaires pour les équations quasi linéaires du premier ordre avec termes sources\",\"authors\":\"Alain Yves Le Roux, Marie Noëlle Le Roux\",\"doi\":\"10.1016/S0764-4442(01)01975-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When a source term is present, the constants are no longer solutions to quasilinear equations. Some numerical techniques based on this property need to be generalized. A stationary profile scheme uses an approximate solution made of stationary solutions in each cell. We propose such a scheme, for which we prove some results of stability and convergence towards the entropy solution. The numerical tests show that this scheme is well adapted to the simulation of well balanced states, and often far better than the usual splitting methods.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 703-706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01975-9\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201019759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201019759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence d'un schéma à profils stationnaires pour les équations quasi linéaires du premier ordre avec termes sources
When a source term is present, the constants are no longer solutions to quasilinear equations. Some numerical techniques based on this property need to be generalized. A stationary profile scheme uses an approximate solution made of stationary solutions in each cell. We propose such a scheme, for which we prove some results of stability and convergence towards the entropy solution. The numerical tests show that this scheme is well adapted to the simulation of well balanced states, and often far better than the usual splitting methods.