Matthew R P Parker, Laura L E Cowen, Jiguo Cao, Lloyd T Elliott
{"title":"复制计数和批量标记隐藏人口模型的计算效率和精度。","authors":"Matthew R P Parker, Laura L E Cowen, Jiguo Cao, Lloyd T Elliott","doi":"10.1007/s13253-022-00509-y","DOIUrl":null,"url":null,"abstract":"<p><p>We address two computational issues common to open-population <i>N</i>-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population <i>N</i>-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a <math><mrow><mo>∼</mo> <mn>6</mn></mrow> </math> to <math><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for <i>N</i>-mixture models. We also apply our methods to compute the size of a large elk population using an <i>N</i>-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models.\",\"authors\":\"Matthew R P Parker, Laura L E Cowen, Jiguo Cao, Lloyd T Elliott\",\"doi\":\"10.1007/s13253-022-00509-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We address two computational issues common to open-population <i>N</i>-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population <i>N</i>-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a <math><mrow><mo>∼</mo> <mn>6</mn></mrow> </math> to <math><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for <i>N</i>-mixture models. We also apply our methods to compute the size of a large elk population using an <i>N</i>-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-022-00509-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-022-00509-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models.
We address two computational issues common to open-population N-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population N-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a to times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for N-mixture models. We also apply our methods to compute the size of a large elk population using an N-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.