Débora F Gonçalves, Leahn R Senger, João V P Foletto, Paula Michelotti, Félix A A Soares, Cristiane L Dalla Corte
{"title":"咖啡因改善pink1b9缺失突变体黑腹果蝇线粒体功能。","authors":"Débora F Gonçalves, Leahn R Senger, João V P Foletto, Paula Michelotti, Félix A A Soares, Cristiane L Dalla Corte","doi":"10.1007/s10863-022-09952-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1<sup>B9</sup>-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1<sup>B9</sup>-null flies observed by a decrease in O<sub>2</sub> flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINK<sup>B9</sup>-null mutant flies, increasing the mitochondrial O<sub>2</sub> flux compared to untreated PINK<sup>B9</sup>-null mutant flies. Moreover, caffeine treatment increased O<sub>2</sub> flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1<sup>B9</sup>-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":"55 1","pages":"1-13"},"PeriodicalIF":2.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Caffeine improves mitochondrial function in PINK1<sup>B9</sup>-null mutant Drosophila melanogaster.\",\"authors\":\"Débora F Gonçalves, Leahn R Senger, João V P Foletto, Paula Michelotti, Félix A A Soares, Cristiane L Dalla Corte\",\"doi\":\"10.1007/s10863-022-09952-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1<sup>B9</sup>-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1<sup>B9</sup>-null flies observed by a decrease in O<sub>2</sub> flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINK<sup>B9</sup>-null mutant flies, increasing the mitochondrial O<sub>2</sub> flux compared to untreated PINK<sup>B9</sup>-null mutant flies. Moreover, caffeine treatment increased O<sub>2</sub> flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1<sup>B9</sup>-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\"55 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-022-09952-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-022-09952-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Caffeine improves mitochondrial function in PINK1B9-null mutant Drosophila melanogaster.
Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1B9-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1B9-null flies observed by a decrease in O2 flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINKB9-null mutant flies, increasing the mitochondrial O2 flux compared to untreated PINKB9-null mutant flies. Moreover, caffeine treatment increased O2 flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1B9-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.