MicroRNA-122 在抑制三阴性乳腺癌上皮-间质转化和 mTOR 信号通路方面比雷帕霉素更有效

IF 1.2 4区 医学 Q4 ALLERGY
Majdedin Ghalavand, Ruhollah Dorostkar, Hojat Borna, Samira Mohammadi-Yeganeh, Seyed Mahmood Hashemi
{"title":"MicroRNA-122 在抑制三阴性乳腺癌上皮-间质转化和 mTOR 信号通路方面比雷帕霉素更有效","authors":"Majdedin Ghalavand, Ruhollah Dorostkar, Hojat Borna, Samira Mohammadi-Yeganeh, Seyed Mahmood Hashemi","doi":"10.18502/ijaai.v22i1.12006","DOIUrl":null,"url":null,"abstract":"<p><p>The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC.  The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells.  Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA-122 Is More Effective than Rapamycin in Inhibition of Epithelial-mesenchymal Transition and mTOR Signaling Pathway in Triple Negative Breast Cancer.\",\"authors\":\"Majdedin Ghalavand, Ruhollah Dorostkar, Hojat Borna, Samira Mohammadi-Yeganeh, Seyed Mahmood Hashemi\",\"doi\":\"10.18502/ijaai.v22i1.12006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC.  The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells.  Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.</p>\",\"PeriodicalId\":14560,\"journal\":{\"name\":\"Iranian journal of allergy, asthma, and immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of allergy, asthma, and immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18502/ijaai.v22i1.12006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of allergy, asthma, and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18502/ijaai.v22i1.12006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

摘要

导致三阴性乳腺癌(TNBC)等转移性癌症具有侵袭性的基本机制是上皮-间质转化(EMT)。在癌症微环境中,磷脂酰肌醇3-激酶(PI3K)-Akt-哺乳动物雷帕霉素靶标(mTOR)信号通路在调控EMT机制中发挥着关键作用。本研究的重点是雷帕霉素(一种新的针对mTOR的再靶向化疗药物)和MicroRNA(miR)-122对TNBC侵袭行为的影响。 雷帕霉素对4T1细胞的半数最大抑制浓度(IC50)是通过MTT试验测定的。此外,miR-122还被瞬时转染到4T1细胞中,以研究其对通路的影响。实时定量聚合酶链反应(qRT-PCR)评估了 mTOR 和 EMT 相关级联基因的表达水平。此外,还使用划痕和迁移试验分别评估了细胞的移动性和迁移性。雷帕霉素和 miR-122 都能显著降低 PI3K、AKT 和 mTOR 以及 ZeB1 和 Snail 基因的表达水平。然而,Twist 基因的表达没有明显变化。此外,划痕和迁移试验显示,4T1 细胞的迁移明显减少,尤其是在 miR-122 诱导后。我们的实验结果和基因富集研究表明,miR-122 主要作用于多种代谢途径、EMT 和 mTOR,而雷帕霉素在癌细胞中的作用靶点有限。 因此,miR-122 可被视为一种潜在的癌症 microRNA 治疗方案,未来可在动物实验中验证其对癌症控制的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MicroRNA-122 Is More Effective than Rapamycin in Inhibition of Epithelial-mesenchymal Transition and mTOR Signaling Pathway in Triple Negative Breast Cancer.

The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC.  The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells.  Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
6.70%
发文量
64
审稿时长
>12 weeks
期刊介绍: The Iranian Journal of Allergy, Asthma and Immunology (IJAAI), an international peer-reviewed scientific and research journal, seeks to publish original papers, selected review articles, case-based reviews, and other articles of special interest related to the fields of asthma, allergy and immunology. The journal is an official publication of the Iranian Society of Asthma and Allergy (ISAA), which is supported by the Immunology, Asthma and Allergy Research Institute (IAARI) and published by Tehran University of Medical Sciences (TUMS). The journal seeks to provide its readers with the highest quality materials published through a process of careful peer reviews and editorial comments. All papers are published in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信