基于优化迭代最近点的移动机器人改进蒙特卡罗定位

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenjian Ying, Shiyan Sun
{"title":"基于优化迭代最近点的移动机器人改进蒙特卡罗定位","authors":"Wenjian Ying,&nbsp;Shiyan Sun","doi":"10.1049/ccs2.12040","DOIUrl":null,"url":null,"abstract":"<p>This paper details a solution of fusing combination features, Iterative Closest Point (ICP) and Monte Carlo algorithm, in order to solve the problem that mobile robot positioning is easy to fail in a dynamic environment. Firstly, an ICP algorithm based on the maximum common combination feature is proposed to provide a more stable observation point information and therefore avoids the problem of local extremes and obtains more accurate matching results. A novel proposal distribution is then designed and auxiliary particles are used, so that the particle sets are distributed in high-observational areas closer to the true posterior probability of the state. Finally, the experimental results on the public datasets show that the proposed algorithm is more accurate in these environments.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"4 1","pages":"20-30"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12040","citationCount":"4","resultStr":"{\"title\":\"An improved Monte Carlo localization using optimized iterative closest point for mobile robots\",\"authors\":\"Wenjian Ying,&nbsp;Shiyan Sun\",\"doi\":\"10.1049/ccs2.12040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper details a solution of fusing combination features, Iterative Closest Point (ICP) and Monte Carlo algorithm, in order to solve the problem that mobile robot positioning is easy to fail in a dynamic environment. Firstly, an ICP algorithm based on the maximum common combination feature is proposed to provide a more stable observation point information and therefore avoids the problem of local extremes and obtains more accurate matching results. A novel proposal distribution is then designed and auxiliary particles are used, so that the particle sets are distributed in high-observational areas closer to the true posterior probability of the state. Finally, the experimental results on the public datasets show that the proposed algorithm is more accurate in these environments.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"4 1\",\"pages\":\"20-30\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12040\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

针对移动机器人在动态环境中定位容易失败的问题,提出了一种融合组合特征、迭代最近点(ICP)和蒙特卡罗算法的解决方案。首先,提出了一种基于最大共同组合特征的ICP算法,提供了更稳定的观测点信息,从而避免了局部极值问题,获得了更准确的匹配结果;然后设计一个新的建议分布,并使用辅助粒子,使粒子集分布在更接近状态真实后验概率的高观测区域。最后,在公共数据集上的实验结果表明,该算法在这些环境下具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An improved Monte Carlo localization using optimized iterative closest point for mobile robots

An improved Monte Carlo localization using optimized iterative closest point for mobile robots

This paper details a solution of fusing combination features, Iterative Closest Point (ICP) and Monte Carlo algorithm, in order to solve the problem that mobile robot positioning is easy to fail in a dynamic environment. Firstly, an ICP algorithm based on the maximum common combination feature is proposed to provide a more stable observation point information and therefore avoids the problem of local extremes and obtains more accurate matching results. A novel proposal distribution is then designed and auxiliary particles are used, so that the particle sets are distributed in high-observational areas closer to the true posterior probability of the state. Finally, the experimental results on the public datasets show that the proposed algorithm is more accurate in these environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信