Sankha Subhra Ghosh, Surajit Chattopadhyay, Arabinda Das
{"title":"机器人无刷直流电机缓冲电路故障的快速傅立叶变换和小波统计计算","authors":"Sankha Subhra Ghosh, Surajit Chattopadhyay, Arabinda Das","doi":"10.1049/ccs2.12041","DOIUrl":null,"url":null,"abstract":"<p>The snubber circuit plays an important role in motor drives. This paper deals with the detection of the inverter switch snubber circuit resistance fault (ISSCRF) in brushless direct current (BLDC) motors used for robotic applications. This has been carried out in two parts: Fast-Fourier-Transform-based analysis and wavelet-decomposition-based analysis on the stator current of the BLDC motor. The first analysis investigates the effects of different percentages of ISSCRF on direct current (DC) component, fundamental frequency component and total harmonic distortion percentage. Next analyses consider all of kurtosis, skewness and root-mean-square values of wavelet coefficients of stator current harmonic spectra. Comparative learning is made to obtain a few selective parameters best fit for the detection of ISSCRF. A fault detection algorithm to detect ISSCRF has been proposed and validated by three case studies. The algorithm is again modified with best-fit parameters. Comparative discussion and novel contributions of the work have also been presented.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12041","citationCount":"2","resultStr":"{\"title\":\"Fast Fourier transform and wavelet-based statistical computation during fault in snubber circuit connected with robotic brushless direct current motor\",\"authors\":\"Sankha Subhra Ghosh, Surajit Chattopadhyay, Arabinda Das\",\"doi\":\"10.1049/ccs2.12041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The snubber circuit plays an important role in motor drives. This paper deals with the detection of the inverter switch snubber circuit resistance fault (ISSCRF) in brushless direct current (BLDC) motors used for robotic applications. This has been carried out in two parts: Fast-Fourier-Transform-based analysis and wavelet-decomposition-based analysis on the stator current of the BLDC motor. The first analysis investigates the effects of different percentages of ISSCRF on direct current (DC) component, fundamental frequency component and total harmonic distortion percentage. Next analyses consider all of kurtosis, skewness and root-mean-square values of wavelet coefficients of stator current harmonic spectra. Comparative learning is made to obtain a few selective parameters best fit for the detection of ISSCRF. A fault detection algorithm to detect ISSCRF has been proposed and validated by three case studies. The algorithm is again modified with best-fit parameters. Comparative discussion and novel contributions of the work have also been presented.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12041\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fast Fourier transform and wavelet-based statistical computation during fault in snubber circuit connected with robotic brushless direct current motor
The snubber circuit plays an important role in motor drives. This paper deals with the detection of the inverter switch snubber circuit resistance fault (ISSCRF) in brushless direct current (BLDC) motors used for robotic applications. This has been carried out in two parts: Fast-Fourier-Transform-based analysis and wavelet-decomposition-based analysis on the stator current of the BLDC motor. The first analysis investigates the effects of different percentages of ISSCRF on direct current (DC) component, fundamental frequency component and total harmonic distortion percentage. Next analyses consider all of kurtosis, skewness and root-mean-square values of wavelet coefficients of stator current harmonic spectra. Comparative learning is made to obtain a few selective parameters best fit for the detection of ISSCRF. A fault detection algorithm to detect ISSCRF has been proposed and validated by three case studies. The algorithm is again modified with best-fit parameters. Comparative discussion and novel contributions of the work have also been presented.