2+1维中sin - gordon方程的显式数值格式

A. G. Bratsos
{"title":"2+1维中sin - gordon方程的显式数值格式","authors":"A. G. Bratsos","doi":"10.1002/anac.200410035","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an explicit finite-difference method for the numerical solution of the Sine-Gordon equation in two space variables, as it arises, for example, in rectangular large-area Josephson junction. The dispersive nonlinear partial differential equation of the system allows for soliton-type solutions, an ubiquitous phenomenon in a large-variety of physical problems.</p><p>The method, which is based on fourth order rational approximants of the matrix-exponential term in a three-time level recurrence relation, after the application of finite-difference approximations, it leads finally to a second order initial value problem. Because of the existing sinus term this problem becomes nonlinear. To avoid solving the arising nonlinear system a new method based on a predictor-corrector scheme is applied. Both the nonlinear method and the predictor-corrector are analyzed for local truncation error, stability and convergence. Numerical solutions for cases involving the most known from the bibliography ring and line solitons are given. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 2","pages":"189-211"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410035","citationCount":"0","resultStr":"{\"title\":\"An explicit numerical scheme for the Sine-Gordon equation in 2+1 dimensions\",\"authors\":\"A. G. Bratsos\",\"doi\":\"10.1002/anac.200410035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents an explicit finite-difference method for the numerical solution of the Sine-Gordon equation in two space variables, as it arises, for example, in rectangular large-area Josephson junction. The dispersive nonlinear partial differential equation of the system allows for soliton-type solutions, an ubiquitous phenomenon in a large-variety of physical problems.</p><p>The method, which is based on fourth order rational approximants of the matrix-exponential term in a three-time level recurrence relation, after the application of finite-difference approximations, it leads finally to a second order initial value problem. Because of the existing sinus term this problem becomes nonlinear. To avoid solving the arising nonlinear system a new method based on a predictor-corrector scheme is applied. Both the nonlinear method and the predictor-corrector are analyzed for local truncation error, stability and convergence. Numerical solutions for cases involving the most known from the bibliography ring and line solitons are given. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 2\",\"pages\":\"189-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了两个空间变量中正弦-戈登方程数值解的显式有限差分法,例如矩形大面积Josephson结。系统的色散非线性偏微分方程允许孤子型解,这是在各种物理问题中普遍存在的现象。该方法基于三阶递归关系中矩阵-指数项的四阶有理近似,在应用有限差分近似后,最终得到二阶初值问题。由于窦项的存在,这个问题变得非线性。为了避免求解产生的非线性系统,采用了一种基于预测-校正格式的新方法。分析了非线性方法和预测校正方法的局部截断误差、稳定性和收敛性。给出了文献中最常见的环孤子和线孤子的数值解。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit numerical scheme for the Sine-Gordon equation in 2+1 dimensions

The paper presents an explicit finite-difference method for the numerical solution of the Sine-Gordon equation in two space variables, as it arises, for example, in rectangular large-area Josephson junction. The dispersive nonlinear partial differential equation of the system allows for soliton-type solutions, an ubiquitous phenomenon in a large-variety of physical problems.

The method, which is based on fourth order rational approximants of the matrix-exponential term in a three-time level recurrence relation, after the application of finite-difference approximations, it leads finally to a second order initial value problem. Because of the existing sinus term this problem becomes nonlinear. To avoid solving the arising nonlinear system a new method based on a predictor-corrector scheme is applied. Both the nonlinear method and the predictor-corrector are analyzed for local truncation error, stability and convergence. Numerical solutions for cases involving the most known from the bibliography ring and line solitons are given. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信