A. G. Bratsos
下载PDF
{"title":"2+1维中sin - gordon方程的显式数值格式","authors":"A. G. Bratsos","doi":"10.1002/anac.200410035","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an explicit finite-difference method for the numerical solution of the Sine-Gordon equation in two space variables, as it arises, for example, in rectangular large-area Josephson junction. The dispersive nonlinear partial differential equation of the system allows for soliton-type solutions, an ubiquitous phenomenon in a large-variety of physical problems.</p><p>The method, which is based on fourth order rational approximants of the matrix-exponential term in a three-time level recurrence relation, after the application of finite-difference approximations, it leads finally to a second order initial value problem. Because of the existing sinus term this problem becomes nonlinear. To avoid solving the arising nonlinear system a new method based on a predictor-corrector scheme is applied. Both the nonlinear method and the predictor-corrector are analyzed for local truncation error, stability and convergence. Numerical solutions for cases involving the most known from the bibliography ring and line solitons are given. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 2","pages":"189-211"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410035","citationCount":"0","resultStr":"{\"title\":\"An explicit numerical scheme for the Sine-Gordon equation in 2+1 dimensions\",\"authors\":\"A. G. Bratsos\",\"doi\":\"10.1002/anac.200410035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents an explicit finite-difference method for the numerical solution of the Sine-Gordon equation in two space variables, as it arises, for example, in rectangular large-area Josephson junction. The dispersive nonlinear partial differential equation of the system allows for soliton-type solutions, an ubiquitous phenomenon in a large-variety of physical problems.</p><p>The method, which is based on fourth order rational approximants of the matrix-exponential term in a three-time level recurrence relation, after the application of finite-difference approximations, it leads finally to a second order initial value problem. Because of the existing sinus term this problem becomes nonlinear. To avoid solving the arising nonlinear system a new method based on a predictor-corrector scheme is applied. Both the nonlinear method and the predictor-corrector are analyzed for local truncation error, stability and convergence. Numerical solutions for cases involving the most known from the bibliography ring and line solitons are given. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 2\",\"pages\":\"189-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用