基于HMM咳嗽识别系统的COVID-19评估。

Mohamed Hamidi, Ouissam Zealouk, Hassan Satori, Naouar Laaidi, Amine Salek
{"title":"基于HMM咳嗽识别系统的COVID-19评估。","authors":"Mohamed Hamidi,&nbsp;Ouissam Zealouk,&nbsp;Hassan Satori,&nbsp;Naouar Laaidi,&nbsp;Amine Salek","doi":"10.1007/s41870-022-01120-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is a part of our contributions to research on the ongoing COVID-19 pandemic around the world. This research aims to use Hidden Markov Model (HMM) based automatic speech recognition system to analyze the cough signal and determine whether the signal belongs to a sick or healthy speaker. We built a configurable model by using HMMs, Gaussian Mixture Models (GMMs), Mel frequency spectral coefficients (MFCCs) and a cough corpus collected from healthy and sick voluntary speakers. Our proposed method is able to classify dry cough with sensitivity from 85.86% to 91.57%, differentiate the dry cough, and cough COVID-19 symptom with specificity from 5 to 10%. The obtained results are very encouraging to enrich our corpus with more data and increase the performance of our diagnostic system.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595586/pdf/","citationCount":"9","resultStr":"{\"title\":\"COVID-19 assessment using HMM cough recognition system.\",\"authors\":\"Mohamed Hamidi,&nbsp;Ouissam Zealouk,&nbsp;Hassan Satori,&nbsp;Naouar Laaidi,&nbsp;Amine Salek\",\"doi\":\"10.1007/s41870-022-01120-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is a part of our contributions to research on the ongoing COVID-19 pandemic around the world. This research aims to use Hidden Markov Model (HMM) based automatic speech recognition system to analyze the cough signal and determine whether the signal belongs to a sick or healthy speaker. We built a configurable model by using HMMs, Gaussian Mixture Models (GMMs), Mel frequency spectral coefficients (MFCCs) and a cough corpus collected from healthy and sick voluntary speakers. Our proposed method is able to classify dry cough with sensitivity from 85.86% to 91.57%, differentiate the dry cough, and cough COVID-19 symptom with specificity from 5 to 10%. The obtained results are very encouraging to enrich our corpus with more data and increase the performance of our diagnostic system.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595586/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-022-01120-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01120-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文是我们对全球正在进行的COVID-19大流行研究的一部分贡献。本研究旨在利用基于隐马尔可夫模型(HMM)的自动语音识别系统对咳嗽信号进行分析,判断该信号是属于生病还是健康的说话者。我们利用hmm、高斯混合模型(GMMs)、Mel频谱系数(MFCCs)和健康和患病自愿说话者的咳嗽语料库建立了一个可配置模型。该方法对干咳的分类灵敏度为85.86% ~ 91.57%,对干咳和咳嗽COVID-19症状的区分特异性为5% ~ 10%。所得结果对丰富语料库和提高诊断系统的性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

COVID-19 assessment using HMM cough recognition system.

COVID-19 assessment using HMM cough recognition system.

COVID-19 assessment using HMM cough recognition system.

COVID-19 assessment using HMM cough recognition system.

This paper is a part of our contributions to research on the ongoing COVID-19 pandemic around the world. This research aims to use Hidden Markov Model (HMM) based automatic speech recognition system to analyze the cough signal and determine whether the signal belongs to a sick or healthy speaker. We built a configurable model by using HMMs, Gaussian Mixture Models (GMMs), Mel frequency spectral coefficients (MFCCs) and a cough corpus collected from healthy and sick voluntary speakers. Our proposed method is able to classify dry cough with sensitivity from 85.86% to 91.57%, differentiate the dry cough, and cough COVID-19 symptom with specificity from 5 to 10%. The obtained results are very encouraging to enrich our corpus with more data and increase the performance of our diagnostic system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信