COVID-19疫苗接种后角膜移植排斥1例报告

Q3 Medicine
Ji Min Park, Jee Hye Lee, Je Hyung Hwang, Min-Ji Kang
{"title":"COVID-19疫苗接种后角膜移植排斥1例报告","authors":"Ji Min Park, Jee Hye Lee, Je Hyung Hwang, Min-Ji Kang","doi":"10.3341/kjo.2022.0105","DOIUrl":null,"url":null,"abstract":"Dear Editor, Several SARS-CoV-2 vaccines, including messenger RNA vaccines (BNT162b2, Pfizer-BioNTech) and adenovirus vector vaccines (ChAdOX1 nCov-19, AstraZeneca), have been approved for use worldwide. However, ocular side effects have rarely been reported. Herein, we report the case of corneal graft rejection after ChAdOX1 vaccination. The patient provided written informed consent for publication of the research details and clinical images. A 64-year-old male patient had a history (2000 and 2017) of undergoing penetrating keratoplasty (PKP) for corneal opacity in his right and left eyes, respectively. In 2019, another PKP had been performed in his left eye due to graft rejection, which reoccurred 3 months after. Therefore, in 2020, he underwent Descemet stripping automated endothelial keratoplasty (DSAEK) and maintained a clear grafted cornea for 1 year (Fig. 1A). In May 2021, he received the first dose of the ChAdOx1 vaccine. After 3 hours, he experienced a pressing sensation in the left eye; 2 days later, he experienced blurred vision. At presentation, the uncorrected visual acuity was 20 / 50 and the intraocular pressure was 13 mmHg, unchanged compared with 6 months ago. Slit-lamp examination revealed slight conjunctival injection with mild corneal edema. Fine keratic precipitates were found in the central cornea, and a trace anterior chamber reaction was observed (Fig. 1B, 1C). Central corneal thickness had increased from 563 to 615 μm. The number of corneal endothelial cells and their degree of hexagonality decreased (Fig. 1D, 1E). The patient was diagnosed with graft rejection and treated with hourly administration of topical and systemic steroid. Three days later, the symptoms and signs of inflammation resolved, and central corneal thickness decreased to 537 μm. Steroid doses were tapered gradually, and there were no inflammation signs at the 3-month follow-up. However, the corneal endothelial cell count remained lower than on the previous specular microscopy before the rejection (Fig. 1F). No additional signs of graft rejection were observed after received a second dose. This is the f irst case report of graft rejection after SARS-CoV-2 vaccination in South Korea. There have been three reports of graft rejection in patients after BNT162b2 vaccination. Phylactou et al. [1] reported two cases of graft rejection after BNT162b2 vaccination in patients who underwent Descemet’s membrane endothelial keratoplasty. The rejection occurred a week after the first dose in one case and 3 weeks after the second dose in the other. Wasser et al. [2] reported two cases of graft rejection 2 weeks after the f irst dose in patients who had undergone a PKP. Abousy et al. [3] reported one case of bilateral graft rejection 4 days after receiving the second dose in a patient who underwent DSAEK. In this case, the patient received the ChAdOx1 vaccine, which uses a chimpanzee adenovirus that carries the SARS-CoV-2 spike protein. Although the exact mechanism underlying graft rejection following the vaccination is unclear, an immunologic response following seroconversion could be a possible cause [1]. Positive anti-spike immunoglobulin G can be developed over 2 to 4 weeks following SARS-CoV-2 vaccination. All previous cases occurred 4 days to 3 weeks after vaccination, corresponding to the seroconversion period. While there is no definite proof of causation, factors suggestive of a possible causal relationship include the temporal association following vaccination. Here, graft rejection occurred 2 days after SARS-CoV-2 vaccination. After BNT162b2 vaccination, systemic side effects were more commonly reported after the second dose [4]. After ChAdOx1 vaccination, the rate of adverse events after the first dose was relatively higher [5]. Phylactou et al. [1] reported a case of graft rejection after the second BNT162b2 dose. Here, rejection occurred after the first ChAdOx1 dose. Though vaccination increases the systemic immune reKorean J Ophthalmol 2023;37(1):85-87 https://doi.org/10.3341/kjo.2022.0105","PeriodicalId":17883,"journal":{"name":"Korean Journal of Ophthalmology : KJO","volume":"37 1","pages":"85-87"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/ab/kjo-2022-0105.PMC9935065.pdf","citationCount":"1","resultStr":"{\"title\":\"Corneal Graft Rejection after Vaccination against COVID-19: A Case Report.\",\"authors\":\"Ji Min Park, Jee Hye Lee, Je Hyung Hwang, Min-Ji Kang\",\"doi\":\"10.3341/kjo.2022.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, Several SARS-CoV-2 vaccines, including messenger RNA vaccines (BNT162b2, Pfizer-BioNTech) and adenovirus vector vaccines (ChAdOX1 nCov-19, AstraZeneca), have been approved for use worldwide. However, ocular side effects have rarely been reported. Herein, we report the case of corneal graft rejection after ChAdOX1 vaccination. The patient provided written informed consent for publication of the research details and clinical images. A 64-year-old male patient had a history (2000 and 2017) of undergoing penetrating keratoplasty (PKP) for corneal opacity in his right and left eyes, respectively. In 2019, another PKP had been performed in his left eye due to graft rejection, which reoccurred 3 months after. Therefore, in 2020, he underwent Descemet stripping automated endothelial keratoplasty (DSAEK) and maintained a clear grafted cornea for 1 year (Fig. 1A). In May 2021, he received the first dose of the ChAdOx1 vaccine. After 3 hours, he experienced a pressing sensation in the left eye; 2 days later, he experienced blurred vision. At presentation, the uncorrected visual acuity was 20 / 50 and the intraocular pressure was 13 mmHg, unchanged compared with 6 months ago. Slit-lamp examination revealed slight conjunctival injection with mild corneal edema. Fine keratic precipitates were found in the central cornea, and a trace anterior chamber reaction was observed (Fig. 1B, 1C). Central corneal thickness had increased from 563 to 615 μm. The number of corneal endothelial cells and their degree of hexagonality decreased (Fig. 1D, 1E). The patient was diagnosed with graft rejection and treated with hourly administration of topical and systemic steroid. Three days later, the symptoms and signs of inflammation resolved, and central corneal thickness decreased to 537 μm. Steroid doses were tapered gradually, and there were no inflammation signs at the 3-month follow-up. However, the corneal endothelial cell count remained lower than on the previous specular microscopy before the rejection (Fig. 1F). No additional signs of graft rejection were observed after received a second dose. This is the f irst case report of graft rejection after SARS-CoV-2 vaccination in South Korea. There have been three reports of graft rejection in patients after BNT162b2 vaccination. Phylactou et al. [1] reported two cases of graft rejection after BNT162b2 vaccination in patients who underwent Descemet’s membrane endothelial keratoplasty. The rejection occurred a week after the first dose in one case and 3 weeks after the second dose in the other. Wasser et al. [2] reported two cases of graft rejection 2 weeks after the f irst dose in patients who had undergone a PKP. Abousy et al. [3] reported one case of bilateral graft rejection 4 days after receiving the second dose in a patient who underwent DSAEK. In this case, the patient received the ChAdOx1 vaccine, which uses a chimpanzee adenovirus that carries the SARS-CoV-2 spike protein. Although the exact mechanism underlying graft rejection following the vaccination is unclear, an immunologic response following seroconversion could be a possible cause [1]. Positive anti-spike immunoglobulin G can be developed over 2 to 4 weeks following SARS-CoV-2 vaccination. All previous cases occurred 4 days to 3 weeks after vaccination, corresponding to the seroconversion period. While there is no definite proof of causation, factors suggestive of a possible causal relationship include the temporal association following vaccination. Here, graft rejection occurred 2 days after SARS-CoV-2 vaccination. After BNT162b2 vaccination, systemic side effects were more commonly reported after the second dose [4]. After ChAdOx1 vaccination, the rate of adverse events after the first dose was relatively higher [5]. Phylactou et al. [1] reported a case of graft rejection after the second BNT162b2 dose. Here, rejection occurred after the first ChAdOx1 dose. Though vaccination increases the systemic immune reKorean J Ophthalmol 2023;37(1):85-87 https://doi.org/10.3341/kjo.2022.0105\",\"PeriodicalId\":17883,\"journal\":{\"name\":\"Korean Journal of Ophthalmology : KJO\",\"volume\":\"37 1\",\"pages\":\"85-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/ab/kjo-2022-0105.PMC9935065.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Ophthalmology : KJO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3341/kjo.2022.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ophthalmology : KJO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3341/kjo.2022.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Corneal Graft Rejection after Vaccination against COVID-19: A Case Report.

Corneal Graft Rejection after Vaccination against COVID-19: A Case Report.
Dear Editor, Several SARS-CoV-2 vaccines, including messenger RNA vaccines (BNT162b2, Pfizer-BioNTech) and adenovirus vector vaccines (ChAdOX1 nCov-19, AstraZeneca), have been approved for use worldwide. However, ocular side effects have rarely been reported. Herein, we report the case of corneal graft rejection after ChAdOX1 vaccination. The patient provided written informed consent for publication of the research details and clinical images. A 64-year-old male patient had a history (2000 and 2017) of undergoing penetrating keratoplasty (PKP) for corneal opacity in his right and left eyes, respectively. In 2019, another PKP had been performed in his left eye due to graft rejection, which reoccurred 3 months after. Therefore, in 2020, he underwent Descemet stripping automated endothelial keratoplasty (DSAEK) and maintained a clear grafted cornea for 1 year (Fig. 1A). In May 2021, he received the first dose of the ChAdOx1 vaccine. After 3 hours, he experienced a pressing sensation in the left eye; 2 days later, he experienced blurred vision. At presentation, the uncorrected visual acuity was 20 / 50 and the intraocular pressure was 13 mmHg, unchanged compared with 6 months ago. Slit-lamp examination revealed slight conjunctival injection with mild corneal edema. Fine keratic precipitates were found in the central cornea, and a trace anterior chamber reaction was observed (Fig. 1B, 1C). Central corneal thickness had increased from 563 to 615 μm. The number of corneal endothelial cells and their degree of hexagonality decreased (Fig. 1D, 1E). The patient was diagnosed with graft rejection and treated with hourly administration of topical and systemic steroid. Three days later, the symptoms and signs of inflammation resolved, and central corneal thickness decreased to 537 μm. Steroid doses were tapered gradually, and there were no inflammation signs at the 3-month follow-up. However, the corneal endothelial cell count remained lower than on the previous specular microscopy before the rejection (Fig. 1F). No additional signs of graft rejection were observed after received a second dose. This is the f irst case report of graft rejection after SARS-CoV-2 vaccination in South Korea. There have been three reports of graft rejection in patients after BNT162b2 vaccination. Phylactou et al. [1] reported two cases of graft rejection after BNT162b2 vaccination in patients who underwent Descemet’s membrane endothelial keratoplasty. The rejection occurred a week after the first dose in one case and 3 weeks after the second dose in the other. Wasser et al. [2] reported two cases of graft rejection 2 weeks after the f irst dose in patients who had undergone a PKP. Abousy et al. [3] reported one case of bilateral graft rejection 4 days after receiving the second dose in a patient who underwent DSAEK. In this case, the patient received the ChAdOx1 vaccine, which uses a chimpanzee adenovirus that carries the SARS-CoV-2 spike protein. Although the exact mechanism underlying graft rejection following the vaccination is unclear, an immunologic response following seroconversion could be a possible cause [1]. Positive anti-spike immunoglobulin G can be developed over 2 to 4 weeks following SARS-CoV-2 vaccination. All previous cases occurred 4 days to 3 weeks after vaccination, corresponding to the seroconversion period. While there is no definite proof of causation, factors suggestive of a possible causal relationship include the temporal association following vaccination. Here, graft rejection occurred 2 days after SARS-CoV-2 vaccination. After BNT162b2 vaccination, systemic side effects were more commonly reported after the second dose [4]. After ChAdOx1 vaccination, the rate of adverse events after the first dose was relatively higher [5]. Phylactou et al. [1] reported a case of graft rejection after the second BNT162b2 dose. Here, rejection occurred after the first ChAdOx1 dose. Though vaccination increases the systemic immune reKorean J Ophthalmol 2023;37(1):85-87 https://doi.org/10.3341/kjo.2022.0105
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Ophthalmology : KJO
Korean Journal of Ophthalmology : KJO Medicine-Ophthalmology
CiteScore
2.40
自引率
0.00%
发文量
84
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信