膜电位介导多细胞稳态的一种古老的机械转导机制。

Avik Mukherjee, Yanqing Huang, Jens Elgeti, Seungeun Oh, Jose G Abreu, Anjali Rebecca Neliat, Janik Schüttler, Dan-Dan Su, Christophe Dupre, Nina Catherine Benites, Xili Liu, Leonid Peshkin, Mihail Barboiu, Hugo Stocker, Marc W Kirschner, Markus Basan
{"title":"膜电位介导多细胞稳态的一种古老的机械转导机制。","authors":"Avik Mukherjee, Yanqing Huang, Jens Elgeti, Seungeun Oh, Jose G Abreu, Anjali Rebecca Neliat, Janik Schüttler, Dan-Dan Su, Christophe Dupre, Nina Catherine Benites, Xili Liu, Leonid Peshkin, Mihail Barboiu, Hugo Stocker, Marc W Kirschner, Markus Basan","doi":"10.1101/2023.11.02.565386","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure. We show that mechanical forces acting on the cell change cellular biomass density, which in turn alters membrane potential. Membrane potential then regulates cell number density in epithelia by controlling cell growth, proliferation, and cell elimination. Mechanistically, we show that changes in membrane potential control signaling through the Hippo and MAPK pathways, and potentially other signaling pathways that originate at the cell membrane. While many molecular interactions are known to affect Hippo signaling, the upstream signal that activates the canonical Hippo pathway at the membrane has previously been elusive. Our results establish membrane potential as a central regulator of growth and tissue homeostasis.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635089/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membrane potential mediates the cellular response to mechanical pressure.\",\"authors\":\"Avik Mukherjee, Yanqing Huang, Jens Elgeti, Seungeun Oh, Jose G Abreu, Anjali Rebecca Neliat, Janik Schüttler, Dan-Dan Su, Christophe Dupre, Nina Catherine Benites, Xili Liu, Leonid Peshkin, Mihail Barboiu, Hugo Stocker, Marc W Kirschner, Markus Basan\",\"doi\":\"10.1101/2023.11.02.565386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure. We show that mechanical forces acting on the cell change cellular biomass density, which in turn alters membrane potential. Membrane potential then regulates cell number density in epithelia by controlling cell growth, proliferation, and cell elimination. Mechanistically, we show that changes in membrane potential control signaling through the Hippo and MAPK pathways, and potentially other signaling pathways that originate at the cell membrane. While many molecular interactions are known to affect Hippo signaling, the upstream signal that activates the canonical Hippo pathway at the membrane has previously been elusive. Our results establish membrane potential as a central regulator of growth and tissue homeostasis.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635089/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.02.565386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.02.565386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膜电位是所有活细胞的特性。然而,其在不可兴奋细胞中的生理作用尚不清楚。静息膜电位通常被认为对特定的细胞类型是固定的,并受到严格的稳态控制,类似于哺乳动物的体温。与这种被广泛接受的范式相反,我们发现膜电位是一种动态特性,直接反映了组织密度和作用在细胞上的机械力。作为准瞬时的、全局的密度和机械压力读数,膜电位通过影响膜中蛋白质的构象和聚类3,4以及关键信号离子的跨膜通量5,6,与信号转导网络相结合。事实上,我们发现重要的机械传感通路YAP, Jnk和p38 7-121314直接受膜电位控制。我们进一步表明,通过膜电位的机械转导在上皮组织的稳态中起着关键作用,通过控制细胞的增殖和细胞挤压来设定组织密度。此外,机械拉伸引发的去极化波提高了伤口愈合的速度。通过膜电位的机械转导可能构成了多细胞生物中一种古老的稳态机制,可能是可兴奋组织和神经元机械传感进化的垫脚石。膜电位介导的稳态调节的破坏可能有助于肿瘤的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membrane potential mediates the cellular response to mechanical pressure.

Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure. We show that mechanical forces acting on the cell change cellular biomass density, which in turn alters membrane potential. Membrane potential then regulates cell number density in epithelia by controlling cell growth, proliferation, and cell elimination. Mechanistically, we show that changes in membrane potential control signaling through the Hippo and MAPK pathways, and potentially other signaling pathways that originate at the cell membrane. While many molecular interactions are known to affect Hippo signaling, the upstream signal that activates the canonical Hippo pathway at the membrane has previously been elusive. Our results establish membrane potential as a central regulator of growth and tissue homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信