Ophelia V Lee, Daisy X Ji, Bruce A Rosa, David L Jaye, Sara Suliman, Makedonka Mitreva, Cem Gabay, Russell E Vance, Dmitri I Kotov
{"title":"免疫抑制是结核病易感性的保守驱动因素。","authors":"Ophelia V Lee, Daisy X Ji, Bruce A Rosa, David L Jaye, Sara Suliman, Makedonka Mitreva, Cem Gabay, Russell E Vance, Dmitri I Kotov","doi":"10.1101/2023.10.27.564420","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb) causes 1.25 million deaths a year. However, tuberculosis (TB) pathogenesis remains poorly understood and is not fully recapitulated in standard mouse models. Here we find that gene signatures from three different Mtb-susceptible mouse models predict active TB disease in humans significantly better than a signature from resistant C57BL/6 (B6) mice. Conserved among susceptible mice, non-human primates, and humans, but largely absent from B6 mice, was Mtb-induced differentiation of macrophages into an Spp1+ differentiation state. Spp1+ macrophages expressed high levels of immunosuppressive molecules including IL-1 receptor antagonist (IL-1Ra). IL-1Ra was previously reported to cause Mtb susceptibility in one mouse model, but whether IL-1Ra is broadly important remains uncertain. Here we report that enhancement of IL-1 signaling via deletion of IL-Ra promoted bacterial control across three susceptible mouse models. We found IL-1 signaling amplified production of multiple cytokines by lymphoid and stromal cells, providing a multifactorial mechanism for how IL-1 promotes Mtb control. Our results indicate that myeloid cell expression of immunosuppressive molecules, in particular IL-1 receptor antagonist, is a conserved early mechanism limiting Mtb control in mice, non-human primates, and humans.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interleukin-1 receptor antagonist is a conserved early factor for exacerbating tuberculosis susceptibility.\",\"authors\":\"Ophelia V Lee, Daisy X Ji, Bruce A Rosa, David L Jaye, Sara Suliman, Makedonka Mitreva, Cem Gabay, Russell E Vance, Dmitri I Kotov\",\"doi\":\"10.1101/2023.10.27.564420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mycobacterium tuberculosis (Mtb) causes 1.25 million deaths a year. However, tuberculosis (TB) pathogenesis remains poorly understood and is not fully recapitulated in standard mouse models. Here we find that gene signatures from three different Mtb-susceptible mouse models predict active TB disease in humans significantly better than a signature from resistant C57BL/6 (B6) mice. Conserved among susceptible mice, non-human primates, and humans, but largely absent from B6 mice, was Mtb-induced differentiation of macrophages into an Spp1+ differentiation state. Spp1+ macrophages expressed high levels of immunosuppressive molecules including IL-1 receptor antagonist (IL-1Ra). IL-1Ra was previously reported to cause Mtb susceptibility in one mouse model, but whether IL-1Ra is broadly important remains uncertain. Here we report that enhancement of IL-1 signaling via deletion of IL-Ra promoted bacterial control across three susceptible mouse models. We found IL-1 signaling amplified production of multiple cytokines by lymphoid and stromal cells, providing a multifactorial mechanism for how IL-1 promotes Mtb control. Our results indicate that myeloid cell expression of immunosuppressive molecules, in particular IL-1 receptor antagonist, is a conserved early mechanism limiting Mtb control in mice, non-human primates, and humans.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.10.27.564420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.27.564420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interleukin-1 receptor antagonist is a conserved early factor for exacerbating tuberculosis susceptibility.
Mycobacterium tuberculosis (Mtb) causes 1.25 million deaths a year. However, tuberculosis (TB) pathogenesis remains poorly understood and is not fully recapitulated in standard mouse models. Here we find that gene signatures from three different Mtb-susceptible mouse models predict active TB disease in humans significantly better than a signature from resistant C57BL/6 (B6) mice. Conserved among susceptible mice, non-human primates, and humans, but largely absent from B6 mice, was Mtb-induced differentiation of macrophages into an Spp1+ differentiation state. Spp1+ macrophages expressed high levels of immunosuppressive molecules including IL-1 receptor antagonist (IL-1Ra). IL-1Ra was previously reported to cause Mtb susceptibility in one mouse model, but whether IL-1Ra is broadly important remains uncertain. Here we report that enhancement of IL-1 signaling via deletion of IL-Ra promoted bacterial control across three susceptible mouse models. We found IL-1 signaling amplified production of multiple cytokines by lymphoid and stromal cells, providing a multifactorial mechanism for how IL-1 promotes Mtb control. Our results indicate that myeloid cell expression of immunosuppressive molecules, in particular IL-1 receptor antagonist, is a conserved early mechanism limiting Mtb control in mice, non-human primates, and humans.