低温电子断层扫描揭示了心脏蛋白在细胞环境中的结构多样性。

Rahel A Woldeyes, Masataka Nishiga, Alison S Vander Roest, Leeya Engel, Prerna Giri, Gabrielle C Montenegro, Alexander R Dunn, James A Spudich, Daniel Bernstein, Michael F Schmid, Joseph C Wu, Wah Chiu
{"title":"低温电子断层扫描揭示了心脏蛋白在细胞环境中的结构多样性。","authors":"Rahel A Woldeyes, Masataka Nishiga, Alison S Vander Roest, Leeya Engel, Prerna Giri, Gabrielle C Montenegro, Alexander R Dunn, James A Spudich, Daniel Bernstein, Michael F Schmid, Joseph C Wu, Wah Chiu","doi":"10.1101/2023.10.26.564098","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are a leading cause of death worldwide, but our understanding of the underlying mechanisms is limited, in part because of the complexity of the cellular machinery that controls the heart muscle contraction cycle. Cryogenic electron tomography (cryo-ET) provides a way to visualize diverse cellular machinery while preserving contextual information like subcellular localization and transient complex formation, but this approach has not been widely applied to the study of heart muscle cells (cardiomyocytes). Here, we deploy an optimized cryo-ET platform that enables cellular-structural biology in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using this platform, we reconstructed sub-nanometer resolution structures of the human cardiac muscle thin filament, a central component of the contractile machinery. Reconstructing the troponin complex, a regulatory component of the thin filament, from within cells, we identified previously unobserved conformations that highlight the structural flexibility of this regulatory complex. We next measured the impact of chemical and genetic perturbations associated with cardiovascular disease on the structure of troponin. In both cases, we found changes in troponin structure that are consistent with known disease phenotypes-highlighting the value of our approach for dissecting complex disease mechanisms in the cellular context.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure of the Thin Filament in Human iPSC-derived Cardiomyocytes and its Response to Heart Disease.\",\"authors\":\"Rahel A Woldeyes, Masataka Nishiga, Alison S Vander Roest, Leeya Engel, Prerna Giri, Gabrielle C Montenegro, Alexander R Dunn, James A Spudich, Daniel Bernstein, Michael F Schmid, Joseph C Wu, Wah Chiu\",\"doi\":\"10.1101/2023.10.26.564098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases are a leading cause of death worldwide, but our understanding of the underlying mechanisms is limited, in part because of the complexity of the cellular machinery that controls the heart muscle contraction cycle. Cryogenic electron tomography (cryo-ET) provides a way to visualize diverse cellular machinery while preserving contextual information like subcellular localization and transient complex formation, but this approach has not been widely applied to the study of heart muscle cells (cardiomyocytes). Here, we deploy an optimized cryo-ET platform that enables cellular-structural biology in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using this platform, we reconstructed sub-nanometer resolution structures of the human cardiac muscle thin filament, a central component of the contractile machinery. Reconstructing the troponin complex, a regulatory component of the thin filament, from within cells, we identified previously unobserved conformations that highlight the structural flexibility of this regulatory complex. We next measured the impact of chemical and genetic perturbations associated with cardiovascular disease on the structure of troponin. In both cases, we found changes in troponin structure that are consistent with known disease phenotypes-highlighting the value of our approach for dissecting complex disease mechanisms in the cellular context.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.10.26.564098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.26.564098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是世界范围内导致死亡的主要原因之一,但我们对其潜在机制的理解有限,部分原因是控制心肌收缩周期的细胞机制的复杂性。低温电子断层扫描(cryo-ET)提供了一种可视化不同细胞机制的方法,同时保留了亚细胞定位和瞬态复合物形成等背景信息,但这种方法尚未广泛应用于心肌细胞的研究。在这里,我们通过将冷冻et与人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)相结合,部署了一个研究心血管疾病的平台。在开发了用于在hiPSC-CMs中可视化大分子的低温et工作流程后,我们重建了人体细丝的亚纳米分辨率结构,这是收缩机械的核心组成部分。我们还可视化了一个先前未观察到的调节复合体的组织,该组织将肌肉收缩与钙信号(肌钙蛋白复合体)联系起来,突出了我们在细胞环境中询问心脏蛋白结构的方法的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of the Thin Filament in Human iPSC-derived Cardiomyocytes and its Response to Heart Disease.

Cardiovascular diseases are a leading cause of death worldwide, but our understanding of the underlying mechanisms is limited, in part because of the complexity of the cellular machinery that controls the heart muscle contraction cycle. Cryogenic electron tomography (cryo-ET) provides a way to visualize diverse cellular machinery while preserving contextual information like subcellular localization and transient complex formation, but this approach has not been widely applied to the study of heart muscle cells (cardiomyocytes). Here, we deploy an optimized cryo-ET platform that enables cellular-structural biology in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using this platform, we reconstructed sub-nanometer resolution structures of the human cardiac muscle thin filament, a central component of the contractile machinery. Reconstructing the troponin complex, a regulatory component of the thin filament, from within cells, we identified previously unobserved conformations that highlight the structural flexibility of this regulatory complex. We next measured the impact of chemical and genetic perturbations associated with cardiovascular disease on the structure of troponin. In both cases, we found changes in troponin structure that are consistent with known disease phenotypes-highlighting the value of our approach for dissecting complex disease mechanisms in the cellular context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信