{"title":"肠道微生物组介导鞘翅目对稀缺食物的适应。","authors":"Oana Teodora Moldovan, Alyssa A Carrell, Paul-Adrian Bulzu, Erika Levei, Ruxandra Bucur, Cristian Sitar, Luchiana Faur, Ionuț Cornel Mirea, Marin Șenilă, Oana Cadar, Mircea Podar","doi":"10.1186/s40793-023-00537-2","DOIUrl":null,"url":null,"abstract":"<p><p>Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644639/pdf/","citationCount":"0","resultStr":"{\"title\":\"The gut microbiome mediates adaptation to scarce food in Coleoptera.\",\"authors\":\"Oana Teodora Moldovan, Alyssa A Carrell, Paul-Adrian Bulzu, Erika Levei, Ruxandra Bucur, Cristian Sitar, Luchiana Faur, Ionuț Cornel Mirea, Marin Șenilă, Oana Cadar, Mircea Podar\",\"doi\":\"10.1186/s40793-023-00537-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-023-00537-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-023-00537-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The gut microbiome mediates adaptation to scarce food in Coleoptera.
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.