反应-扩散营养物-浮游生物模型中由延迟引起的稳定性开关和混沌。

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2023-12-01 Epub Date: 2023-11-14 DOI:10.1080/17513758.2023.2272852
Qing Guo, Lijun Wang, He Liu, Yi Wang, Jianbing Li, Pankaj Kumar Tiwari, Min Zhao, Chuanjun Dai
{"title":"反应-扩散营养物-浮游生物模型中由延迟引起的稳定性开关和混沌。","authors":"Qing Guo, Lijun Wang, He Liu, Yi Wang, Jianbing Li, Pankaj Kumar Tiwari, Min Zhao, Chuanjun Dai","doi":"10.1080/17513758.2023.2272852","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate a reaction-diffusion model incorporating dynamic variables for nutrient, phytoplankton, and zooplankton. Moreover, we account for the impact of time delay in the growth of phytoplankton following nutrient uptake. Our theoretical analysis reveals that the time delay can trigger the emergence of persistent oscillations in the model via a Hopf bifurcation. We also analytically track the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions. Our simulation results demonstrate stability switches occurring for the positive equilibrium with an increasing time lag. Furthermore, the model exhibits homogeneous periodic-2 and 3 solutions, as well as chaotic behaviour. These findings highlight that the presence of time delay in the phytoplankton growth can bring forth dynamical complexity to the nutrient-plankton system of aquatic habitats.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2272852"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability switches and chaos induced by delay in a reaction-diffusion nutrient-plankton model.\",\"authors\":\"Qing Guo, Lijun Wang, He Liu, Yi Wang, Jianbing Li, Pankaj Kumar Tiwari, Min Zhao, Chuanjun Dai\",\"doi\":\"10.1080/17513758.2023.2272852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate a reaction-diffusion model incorporating dynamic variables for nutrient, phytoplankton, and zooplankton. Moreover, we account for the impact of time delay in the growth of phytoplankton following nutrient uptake. Our theoretical analysis reveals that the time delay can trigger the emergence of persistent oscillations in the model via a Hopf bifurcation. We also analytically track the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions. Our simulation results demonstrate stability switches occurring for the positive equilibrium with an increasing time lag. Furthermore, the model exhibits homogeneous periodic-2 and 3 solutions, as well as chaotic behaviour. These findings highlight that the presence of time delay in the phytoplankton growth can bring forth dynamical complexity to the nutrient-plankton system of aquatic habitats.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"17 1\",\"pages\":\"2272852\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2023.2272852\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2023.2272852","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个包含养分、浮游植物和浮游动物动态变量的反应-扩散模型。此外,我们还考虑了营养吸收后浮游植物生长的时间延迟的影响。我们的理论分析表明,时间延迟可以通过Hopf分岔触发模型中持续振荡的出现。分析了Hopf分岔的方向和分岔周期解的稳定性。我们的模拟结果表明,随着时间滞后的增加,正平衡会发生稳定性开关。此外,该模型表现出均匀的周期-2和周期- 3解,以及混沌行为。这些发现表明,浮游植物生长的时间延迟会给水生生境的营养-浮游系统带来动态复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability switches and chaos induced by delay in a reaction-diffusion nutrient-plankton model.

In this paper, we investigate a reaction-diffusion model incorporating dynamic variables for nutrient, phytoplankton, and zooplankton. Moreover, we account for the impact of time delay in the growth of phytoplankton following nutrient uptake. Our theoretical analysis reveals that the time delay can trigger the emergence of persistent oscillations in the model via a Hopf bifurcation. We also analytically track the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions. Our simulation results demonstrate stability switches occurring for the positive equilibrium with an increasing time lag. Furthermore, the model exhibits homogeneous periodic-2 and 3 solutions, as well as chaotic behaviour. These findings highlight that the presence of time delay in the phytoplankton growth can bring forth dynamical complexity to the nutrient-plankton system of aquatic habitats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信