{"title":"由bm - msc衍生的外泌体递送的miR-124靶向肿瘤浸润Treg细胞的MCT1,并改善卵巢癌的免疫治疗。","authors":"Tian Gao, Yong-Qing Lin, Hai-Yan Ye, Wu-Mei Lin","doi":"10.4149/neo_2023_230711N362","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic rewiring of tumor cells leads to an enrichment of lactate in the tumor microenvironment (TME). This lactate-rich environment of solid tumors has been reported to support tumor-infiltrating regulatory T (Treg) cells. Therefore, agents that modify the lactate metabolism of Treg cells have therapeutic potential. Monocarboxylate transporter 1 (MCT1), which Treg cells predominantly express, plays an essential role in the metabolism of tumor-infiltrating Treg cells. In this study, we show that miR-124 directly targets MCT1 and reduces lactate uptake, eventually impairing the immune-suppressive capacity of Treg cells. Particularly, exosomal miR-124 derived from bone marrow mesenchymal stromal cells (BM-MSCs) slows tumor growth and increases response to PD-1 blockade therapy. These data indicate a potential treatment strategy for improving immune checkpoint blockade therapy using miR-124-carried BM-MSCs-derived exosomes.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":" ","pages":"713-721"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-124 delivered by BM-MSCs-derived exosomes targets MCT1 of tumor-infiltrating Treg cells and improves ovarian cancer immunotherapy.\",\"authors\":\"Tian Gao, Yong-Qing Lin, Hai-Yan Ye, Wu-Mei Lin\",\"doi\":\"10.4149/neo_2023_230711N362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic rewiring of tumor cells leads to an enrichment of lactate in the tumor microenvironment (TME). This lactate-rich environment of solid tumors has been reported to support tumor-infiltrating regulatory T (Treg) cells. Therefore, agents that modify the lactate metabolism of Treg cells have therapeutic potential. Monocarboxylate transporter 1 (MCT1), which Treg cells predominantly express, plays an essential role in the metabolism of tumor-infiltrating Treg cells. In this study, we show that miR-124 directly targets MCT1 and reduces lactate uptake, eventually impairing the immune-suppressive capacity of Treg cells. Particularly, exosomal miR-124 derived from bone marrow mesenchymal stromal cells (BM-MSCs) slows tumor growth and increases response to PD-1 blockade therapy. These data indicate a potential treatment strategy for improving immune checkpoint blockade therapy using miR-124-carried BM-MSCs-derived exosomes.</p>\",\"PeriodicalId\":19266,\"journal\":{\"name\":\"Neoplasma\",\"volume\":\" \",\"pages\":\"713-721\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4149/neo_2023_230711N362\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2023_230711N362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
miR-124 delivered by BM-MSCs-derived exosomes targets MCT1 of tumor-infiltrating Treg cells and improves ovarian cancer immunotherapy.
Metabolic rewiring of tumor cells leads to an enrichment of lactate in the tumor microenvironment (TME). This lactate-rich environment of solid tumors has been reported to support tumor-infiltrating regulatory T (Treg) cells. Therefore, agents that modify the lactate metabolism of Treg cells have therapeutic potential. Monocarboxylate transporter 1 (MCT1), which Treg cells predominantly express, plays an essential role in the metabolism of tumor-infiltrating Treg cells. In this study, we show that miR-124 directly targets MCT1 and reduces lactate uptake, eventually impairing the immune-suppressive capacity of Treg cells. Particularly, exosomal miR-124 derived from bone marrow mesenchymal stromal cells (BM-MSCs) slows tumor growth and increases response to PD-1 blockade therapy. These data indicate a potential treatment strategy for improving immune checkpoint blockade therapy using miR-124-carried BM-MSCs-derived exosomes.