酸中毒可引起小鼠冈上肌内束有机基质的显著变化。

IF 2.8 4区 医学 Q3 CELL BIOLOGY
Connective Tissue Research Pub Date : 2024-01-01 Epub Date: 2024-02-01 DOI:10.1080/03008207.2023.2275044
Saparja Nag, Isabelle De Bruyker, Ashley Nelson, Mikayla Moody, Marla Fais, Alix C Deymier
{"title":"酸中毒可引起小鼠冈上肌内束有机基质的显著变化。","authors":"Saparja Nag, Isabelle De Bruyker, Ashley Nelson, Mikayla Moody, Marla Fais, Alix C Deymier","doi":"10.1080/03008207.2023.2275044","DOIUrl":null,"url":null,"abstract":"<p><p>Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was a decrease in collagen content seen in both mineralized and unmineralized tissue as well as a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of the tendon-to-bone attachment were studied; however, no significant changes were elicited in this 14-day model of acidosis. These findings suggest that acidosis can result in significant changes in enthesis composition over the course of 14 days; however, enthesis mechanics may be more structurally mediated rather than affected by compositional changes.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"41-52"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidosis induces significant changes to the murine supraspinatus enthesis organic matrix.\",\"authors\":\"Saparja Nag, Isabelle De Bruyker, Ashley Nelson, Mikayla Moody, Marla Fais, Alix C Deymier\",\"doi\":\"10.1080/03008207.2023.2275044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was a decrease in collagen content seen in both mineralized and unmineralized tissue as well as a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of the tendon-to-bone attachment were studied; however, no significant changes were elicited in this 14-day model of acidosis. These findings suggest that acidosis can result in significant changes in enthesis composition over the course of 14 days; however, enthesis mechanics may be more structurally mediated rather than affected by compositional changes.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"41-52\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2023.2275044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2023.2275044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肩袖病变是一种常见的肌肉骨骼疾病,对老年人、糖尿病和慢性肾病患者的影响尤为严重。已知年龄增长和肾功能不全与酸中毒状态相关,这可能与肩袖损伤发生率增加有关。为了研究酸中毒与肩袖组成和力学之间的潜在关系,本研究采用了一个为期14天的小鼠代谢性酸中毒模型,并检查了对冈上肌腱-肱骨头附着复合体的影响。在酸中毒暴露的第3天开始,末端的弹性基质表现出显著的变化。在第3天和第7天的时间点,矿化和非矿化组织中胶原蛋白含量均下降,矿物质:基质比例下降。也有证据表明,矿物溶解和再沉淀作为缓冲离子不断促进pH稳态。研究了肌腱-骨附着体的力学性能;然而,在这个14天的酸中毒模型中,没有引起明显的变化。这些发现表明,在14天的过程中,酸中毒可导致肠内酯成分的显著变化;然而,接合机制可能更多的是由结构介导,而不是受成分变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acidosis induces significant changes to the murine supraspinatus enthesis organic matrix.

Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was a decrease in collagen content seen in both mineralized and unmineralized tissue as well as a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of the tendon-to-bone attachment were studied; however, no significant changes were elicited in this 14-day model of acidosis. These findings suggest that acidosis can result in significant changes in enthesis composition over the course of 14 days; however, enthesis mechanics may be more structurally mediated rather than affected by compositional changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信