Mohammad Mahboubi-Rabbani, Rosa Zarei, Mehdi Baradaran, Maryam Bayanati, Afshin Zarghi
{"title":"查尔酮作为环氧合酶-2抑制剂的研究进展","authors":"Mohammad Mahboubi-Rabbani, Rosa Zarei, Mehdi Baradaran, Maryam Bayanati, Afshin Zarghi","doi":"10.2174/0118715206267309231103053808","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"77-95"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chalcones as Potential Cyclooxygenase-2 Inhibitors: A Review.\",\"authors\":\"Mohammad Mahboubi-Rabbani, Rosa Zarei, Mehdi Baradaran, Maryam Bayanati, Afshin Zarghi\",\"doi\":\"10.2174/0118715206267309231103053808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"77-95\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206267309231103053808\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206267309231103053808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Chalcones as Potential Cyclooxygenase-2 Inhibitors: A Review.
Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.