股票收益预测的机器学习方法的性能归因

Q1 Mathematics
Stéphane Daul, Thibault Jaisson, Alexandra Nagy
{"title":"股票收益预测的机器学习方法的性能归因","authors":"Stéphane Daul,&nbsp;Thibault Jaisson,&nbsp;Alexandra Nagy","doi":"10.1016/j.jfds.2022.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the performance of investable portfolios built using predicted stock returns from machine learning methods and attribute their performance to linear, marginal non-linear and interaction effects. We use a large set of features including price-based, fundamental-based, and sentiment-based descriptors and use model averaging in the validation procedure to get robust out-of-sample predictions. We find that the superiority of regression trees and neural networks comes from two points: their strong regularization mechanism and their capacity to capture interaction effects. The non-linear component of the marginal predictions on the other hand has no predictive power. Thanks to our methodology, we manage to isolate and study in detail the interaction component. We find that it has significative long term performance independent from the linear modeling and is stable through time.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"8 ","pages":"Pages 86-104"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918822000022/pdfft?md5=a333af8ca27553f8a065459247c83328&pid=1-s2.0-S2405918822000022-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance attribution of machine learning methods for stock returns prediction\",\"authors\":\"Stéphane Daul,&nbsp;Thibault Jaisson,&nbsp;Alexandra Nagy\",\"doi\":\"10.1016/j.jfds.2022.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the performance of investable portfolios built using predicted stock returns from machine learning methods and attribute their performance to linear, marginal non-linear and interaction effects. We use a large set of features including price-based, fundamental-based, and sentiment-based descriptors and use model averaging in the validation procedure to get robust out-of-sample predictions. We find that the superiority of regression trees and neural networks comes from two points: their strong regularization mechanism and their capacity to capture interaction effects. The non-linear component of the marginal predictions on the other hand has no predictive power. Thanks to our methodology, we manage to isolate and study in detail the interaction component. We find that it has significative long term performance independent from the linear modeling and is stable through time.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"8 \",\"pages\":\"Pages 86-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405918822000022/pdfft?md5=a333af8ca27553f8a065459247c83328&pid=1-s2.0-S2405918822000022-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918822000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918822000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了使用机器学习方法预测股票收益构建的可投资组合的绩效,并将其绩效归因于线性、边际非线性和相互作用效应。我们使用了大量的特征,包括基于价格的、基于基本面的和基于情绪的描述符,并在验证过程中使用模型平均来获得稳健的样本外预测。我们发现回归树和神经网络的优势来自两点:它们强大的正则化机制和捕捉交互效应的能力。另一方面,边际预测的非线性成分没有预测能力。由于我们的方法,我们成功地隔离并详细研究了交互组件。我们发现它具有显著的独立于线性建模的长期性能,并且随时间稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance attribution of machine learning methods for stock returns prediction

We analyze the performance of investable portfolios built using predicted stock returns from machine learning methods and attribute their performance to linear, marginal non-linear and interaction effects. We use a large set of features including price-based, fundamental-based, and sentiment-based descriptors and use model averaging in the validation procedure to get robust out-of-sample predictions. We find that the superiority of regression trees and neural networks comes from two points: their strong regularization mechanism and their capacity to capture interaction effects. The non-linear component of the marginal predictions on the other hand has no predictive power. Thanks to our methodology, we manage to isolate and study in detail the interaction component. We find that it has significative long term performance independent from the linear modeling and is stable through time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信