CrossVis:一个可视化分析系统,用于探索异质多元数据,并应用于材料和气候科学

Chad A. Steed , John R. Goodall , Junghoon Chae , Artem Trofimov
{"title":"CrossVis:一个可视化分析系统,用于探索异质多元数据,并应用于材料和气候科学","authors":"Chad A. Steed ,&nbsp;John R. Goodall ,&nbsp;Junghoon Chae ,&nbsp;Artem Trofimov","doi":"10.1016/j.gvc.2020.200013","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new visual analytics system, called CrossVis, that allows flexible exploration of multivariate data with heterogeneous data types. After presenting the design requirements, which were derived from prior collaborations with domain experts, we introduce key features of CrossVis beginning with a tabular data model that coordinates multiple linked views and performance enhancements that enable scalable exploration of complex data. Next, we introduce extensions to the parallel coordinates plot, which include new axis representations for numerical, temporal, categorical, and image data, an embedded bivariate axis option, dynamic selections, focus+context axis scaling, and graphical indicators of key statistical values. We demonstrate the practical effectiveness of CrossVis through two scientific use cases; one focused on understanding neural network image classifications from a genetic engineering project and another involving general exploration of a large and complex data set of historical hurricane observations. We conclude with discussions regarding domain expert feedback, future enhancements to address limitations, and the interdisciplinary process used to design CrossVis.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"3 ","pages":"Article 200013"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gvc.2020.200013","citationCount":"11","resultStr":"{\"title\":\"CrossVis: A visual analytics system for exploring heterogeneous multivariate data with applications to materials and climate sciences\",\"authors\":\"Chad A. Steed ,&nbsp;John R. Goodall ,&nbsp;Junghoon Chae ,&nbsp;Artem Trofimov\",\"doi\":\"10.1016/j.gvc.2020.200013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new visual analytics system, called CrossVis, that allows flexible exploration of multivariate data with heterogeneous data types. After presenting the design requirements, which were derived from prior collaborations with domain experts, we introduce key features of CrossVis beginning with a tabular data model that coordinates multiple linked views and performance enhancements that enable scalable exploration of complex data. Next, we introduce extensions to the parallel coordinates plot, which include new axis representations for numerical, temporal, categorical, and image data, an embedded bivariate axis option, dynamic selections, focus+context axis scaling, and graphical indicators of key statistical values. We demonstrate the practical effectiveness of CrossVis through two scientific use cases; one focused on understanding neural network image classifications from a genetic engineering project and another involving general exploration of a large and complex data set of historical hurricane observations. We conclude with discussions regarding domain expert feedback, future enhancements to address limitations, and the interdisciplinary process used to design CrossVis.</p></div>\",\"PeriodicalId\":100592,\"journal\":{\"name\":\"Graphics and Visual Computing\",\"volume\":\"3 \",\"pages\":\"Article 200013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gvc.2020.200013\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphics and Visual Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666629420300012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629420300012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一个新的可视化分析系统,称为CrossVis,它允许灵活地探索具有异构数据类型的多变量数据。在介绍了设计需求(这些需求来自于先前与领域专家的合作)之后,我们介绍了CrossVis的关键特性,首先是一个表格数据模型,它可以协调多个链接的视图,并增强了性能,可以对复杂数据进行可扩展的探索。接下来,我们介绍了对平行坐标图的扩展,其中包括数值、时间、分类和图像数据的新轴表示,嵌入式二元轴选项,动态选择,焦点+上下文轴缩放以及关键统计值的图形指示器。我们通过两个科学的用例证明了交叉svis的实际有效性;其中一项重点是理解基因工程项目中的神经网络图像分类,另一项涉及对历史飓风观测的大型复杂数据集的一般探索。最后,我们讨论了领域专家的反馈,解决局限性的未来增强,以及用于设计CrossVis的跨学科过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CrossVis: A visual analytics system for exploring heterogeneous multivariate data with applications to materials and climate sciences

CrossVis: A visual analytics system for exploring heterogeneous multivariate data with applications to materials and climate sciences

We present a new visual analytics system, called CrossVis, that allows flexible exploration of multivariate data with heterogeneous data types. After presenting the design requirements, which were derived from prior collaborations with domain experts, we introduce key features of CrossVis beginning with a tabular data model that coordinates multiple linked views and performance enhancements that enable scalable exploration of complex data. Next, we introduce extensions to the parallel coordinates plot, which include new axis representations for numerical, temporal, categorical, and image data, an embedded bivariate axis option, dynamic selections, focus+context axis scaling, and graphical indicators of key statistical values. We demonstrate the practical effectiveness of CrossVis through two scientific use cases; one focused on understanding neural network image classifications from a genetic engineering project and another involving general exploration of a large and complex data set of historical hurricane observations. We conclude with discussions regarding domain expert feedback, future enhancements to address limitations, and the interdisciplinary process used to design CrossVis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信