Fupeng Li, Kai Huang, Jinbing Wang, Kai Yuan, Yiqi Yang, Yihao Liu, Xianhao Zhou, Keyu Kong, Tao Yang, Jian He, Chunjie Liu, Haiyong Ao, Fengxiang Liu, Qian Liu, Tingting Tang, Shengbing Yang
{"title":"一种双功能Ti-Ga合金:通过干扰铁代谢抑制生物膜形成和破骨细胞发生分化。","authors":"Fupeng Li, Kai Huang, Jinbing Wang, Kai Yuan, Yiqi Yang, Yihao Liu, Xianhao Zhou, Keyu Kong, Tao Yang, Jian He, Chunjie Liu, Haiyong Ao, Fengxiang Liu, Qian Liu, Tingting Tang, Shengbing Yang","doi":"10.1186/s40824-023-00362-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component.</p><p><strong>Methods: </strong>A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga<sup>3+</sup> ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation.</p><p><strong>Results: </strong>The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga<sup>3+</sup> ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening.</p><p><strong>Conclusion: </strong>This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga<sup>3+</sup> ions to inhibit biofilm formation and osteoclast differentiation.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"24"},"PeriodicalIF":11.3000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053110/pdf/","citationCount":"2","resultStr":"{\"title\":\"A dual functional Ti-Ga alloy: inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism.\",\"authors\":\"Fupeng Li, Kai Huang, Jinbing Wang, Kai Yuan, Yiqi Yang, Yihao Liu, Xianhao Zhou, Keyu Kong, Tao Yang, Jian He, Chunjie Liu, Haiyong Ao, Fengxiang Liu, Qian Liu, Tingting Tang, Shengbing Yang\",\"doi\":\"10.1186/s40824-023-00362-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component.</p><p><strong>Methods: </strong>A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga<sup>3+</sup> ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation.</p><p><strong>Results: </strong>The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga<sup>3+</sup> ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening.</p><p><strong>Conclusion: </strong>This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga<sup>3+</sup> ions to inhibit biofilm formation and osteoclast differentiation.</p>\",\"PeriodicalId\":9079,\"journal\":{\"name\":\"Biomaterials Research\",\"volume\":\"27 1\",\"pages\":\"24\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053110/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40824-023-00362-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00362-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
A dual functional Ti-Ga alloy: inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism.
Background: Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component.
Methods: A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga3+ ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation.
Results: The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga3+ ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening.
Conclusion: This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga3+ ions to inhibit biofilm formation and osteoclast differentiation.
期刊介绍:
Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.