Sebastian Knopp, Benjamin Biesinger, Matthias Prandtstetter
{"title":"移动提供分配在企业设置","authors":"Sebastian Knopp, Benjamin Biesinger, Matthias Prandtstetter","doi":"10.1016/j.ejco.2021.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Corporate mobility is often based on a fixed assignment of vehicles to employees. Relaxing this fixation and including alternatives such as public transportation or taxis for business and private trips could increase fleet utilization and foster the use of battery electric vehicles. We introduce the <em>mobility offer allocation problem</em>as the core concept of a flexible booking system for corporate mobility. The problem is equivalent to interval scheduling on dedicated unrelated parallel machines. We show that the problem is NP-hard to approximate within any factor. We describe problem specific conflict graphs for representing and exploring the structure of feasible solutions. A characterization of all maximum cliques in these conflict graphs reveals symmetries which allow to formulate stronger integer linear programming models. We also present an adaptive large neighborhood search based approach which makes use of conflict graphs as well. In a computational study, the approaches are evaluated. It was found that greedy heuristics perform best if very tight run-time requirements are given, a solver for the integer linear programming model performs best on small and medium instances, and the adaptive large neighborhood search performs best on large instances.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100010"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100010","citationCount":"3","resultStr":"{\"title\":\"Mobility offer allocations in corporate settings\",\"authors\":\"Sebastian Knopp, Benjamin Biesinger, Matthias Prandtstetter\",\"doi\":\"10.1016/j.ejco.2021.100010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Corporate mobility is often based on a fixed assignment of vehicles to employees. Relaxing this fixation and including alternatives such as public transportation or taxis for business and private trips could increase fleet utilization and foster the use of battery electric vehicles. We introduce the <em>mobility offer allocation problem</em>as the core concept of a flexible booking system for corporate mobility. The problem is equivalent to interval scheduling on dedicated unrelated parallel machines. We show that the problem is NP-hard to approximate within any factor. We describe problem specific conflict graphs for representing and exploring the structure of feasible solutions. A characterization of all maximum cliques in these conflict graphs reveals symmetries which allow to formulate stronger integer linear programming models. We also present an adaptive large neighborhood search based approach which makes use of conflict graphs as well. In a computational study, the approaches are evaluated. It was found that greedy heuristics perform best if very tight run-time requirements are given, a solver for the integer linear programming model performs best on small and medium instances, and the adaptive large neighborhood search performs best on large instances.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100010\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100010\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Corporate mobility is often based on a fixed assignment of vehicles to employees. Relaxing this fixation and including alternatives such as public transportation or taxis for business and private trips could increase fleet utilization and foster the use of battery electric vehicles. We introduce the mobility offer allocation problemas the core concept of a flexible booking system for corporate mobility. The problem is equivalent to interval scheduling on dedicated unrelated parallel machines. We show that the problem is NP-hard to approximate within any factor. We describe problem specific conflict graphs for representing and exploring the structure of feasible solutions. A characterization of all maximum cliques in these conflict graphs reveals symmetries which allow to formulate stronger integer linear programming models. We also present an adaptive large neighborhood search based approach which makes use of conflict graphs as well. In a computational study, the approaches are evaluated. It was found that greedy heuristics perform best if very tight run-time requirements are given, a solver for the integer linear programming model performs best on small and medium instances, and the adaptive large neighborhood search performs best on large instances.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.