双层优化中的混合整数规划技术综述

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Thomas Kleinert , Martine Labbé , Ivana Ljubić , Martin Schmidt
{"title":"双层优化中的混合整数规划技术综述","authors":"Thomas Kleinert ,&nbsp;Martine Labbé ,&nbsp;Ivana Ljubić ,&nbsp;Martin Schmidt","doi":"10.1016/j.ejco.2021.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980’s but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100007"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100007","citationCount":"93","resultStr":"{\"title\":\"A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization\",\"authors\":\"Thomas Kleinert ,&nbsp;Martine Labbé ,&nbsp;Ivana Ljubić ,&nbsp;Martin Schmidt\",\"doi\":\"10.1016/j.ejco.2021.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980’s but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100007\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 93

摘要

双层优化是数学规划的一个领域,其中一些变量被约束为另一个优化问题的解。因此,双层优化能够对分层决策过程进行建模。这对于建模现实世界的问题很有吸引力,但它也使得最终的优化模型在理论和实践中难以解决。在过去十年中,科学界对计算双层优化的兴趣大大增加,并且仍在增长。无论双层问题本身是否包含整数变量,许多最先进的双层优化解决方法都使用源自混合整数规划的技术。这些技术包括分支-绑定方法、切割平面,以及分支-切割方法,或者特定于问题的分解方法。在这篇调查文章中,我们回顾了利用这些混合整数规划技术来解决双层优化问题的双层定制方法。为此,我们首先考虑具有凸问题的双层问题,特别是线性下层问题。该领域所讨论的解决方法源于20世纪80年代的原创作品,但另一方面,今天仍在积极研究。其次,我们回顾了解决混合整数两层问题的现代算法方法,这些问题在较低的层次上包含完整性约束。此外,我们还简要讨论了混合整数非线性双层问题的范围。第三,我们将一些注意力放在更具体的领域,如真正包含双线性和非凸方面的定价或拦截模型。最后,我们概述了算法和计算双层优化领域的开放问题列表,这些问题可能会导致有趣的未来研究,从而进一步推动这一迷人而活跃的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980’s but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信