基于信息扩散的混合模糊预测社会网络中的意见演变。

Samson Ebenezar Uthirapathy, Domnic Sandanam
{"title":"基于信息扩散的混合模糊预测社会网络中的意见演变。","authors":"Samson Ebenezar Uthirapathy,&nbsp;Domnic Sandanam","doi":"10.1007/s41870-022-01109-2","DOIUrl":null,"url":null,"abstract":"<p><p>Social media plays an important role in disseminating information and analysing public and government opinions. The vast majority of previous research has examined information diffusion and opinion analysis separately. This study proposes a new framework for analysing both information diffusion and opinion evolution. The change in opinion over time is known as opinion evolution. To propose a new model for predicting information diffusion and opinion analysis in social media, a forest fire algorithm, cuckoo search, and fuzzy c-means clustering are used. The forest fire algorithm is used to determine the diffuser and non-diffuser of information in social networks, and fuzzy c-means clustering with the cuckoo search optimization algorithm is proposed to cluster Twitter content into various opinion categories and to determine opinion change. On different Twitter data sets, the proposed model outperformed the existing methods in terms of precision, recall, and accuracy.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554852/pdf/","citationCount":"1","resultStr":"{\"title\":\"Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.\",\"authors\":\"Samson Ebenezar Uthirapathy,&nbsp;Domnic Sandanam\",\"doi\":\"10.1007/s41870-022-01109-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social media plays an important role in disseminating information and analysing public and government opinions. The vast majority of previous research has examined information diffusion and opinion analysis separately. This study proposes a new framework for analysing both information diffusion and opinion evolution. The change in opinion over time is known as opinion evolution. To propose a new model for predicting information diffusion and opinion analysis in social media, a forest fire algorithm, cuckoo search, and fuzzy c-means clustering are used. The forest fire algorithm is used to determine the diffuser and non-diffuser of information in social networks, and fuzzy c-means clustering with the cuckoo search optimization algorithm is proposed to cluster Twitter content into various opinion categories and to determine opinion change. On different Twitter data sets, the proposed model outperformed the existing methods in terms of precision, recall, and accuracy.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554852/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-022-01109-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01109-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交媒体在传播信息和分析公众和政府意见方面发挥着重要作用。之前的绝大多数研究分别考察了信息扩散和意见分析。本研究提出了一个分析信息扩散和意见演变的新框架。随着时间的推移,意见的变化被称为意见演变。基于森林火灾算法、布谷鸟搜索和模糊c均值聚类,提出了一种预测社交媒体信息扩散和意见分析的新模型。利用森林火灾算法确定社交网络中信息的扩散者和非扩散者,并提出了结合布谷鸟搜索优化算法的模糊c均值聚类,将Twitter内容聚类到各种意见类别中,确定意见变化。在不同的Twitter数据集上,所提出的模型在精密度、召回率和准确度方面都优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.

Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.

Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.

Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.

Social media plays an important role in disseminating information and analysing public and government opinions. The vast majority of previous research has examined information diffusion and opinion analysis separately. This study proposes a new framework for analysing both information diffusion and opinion evolution. The change in opinion over time is known as opinion evolution. To propose a new model for predicting information diffusion and opinion analysis in social media, a forest fire algorithm, cuckoo search, and fuzzy c-means clustering are used. The forest fire algorithm is used to determine the diffuser and non-diffuser of information in social networks, and fuzzy c-means clustering with the cuckoo search optimization algorithm is proposed to cluster Twitter content into various opinion categories and to determine opinion change. On different Twitter data sets, the proposed model outperformed the existing methods in terms of precision, recall, and accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信