{"title":"无约束旅行比武问题三次形式的多面体研究","authors":"Marije R. Siemann, Matthias Walter","doi":"10.1016/j.disopt.2022.100741","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull as well as of faces induced by model inequalities. Moreover, we introduce a new class of inequalities and show that they are facet-defining. Finally, we evaluate the impact of these inequalities on the linear programming bounds.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"46 ","pages":"Article 100741"},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1572528622000469/pdfft?md5=2782e081b2be6a05c56eac20c9af53c2&pid=1-s2.0-S1572528622000469-main.pdf","citationCount":"1","resultStr":"{\"title\":\"A polyhedral study for the cubic formulation of the unconstrained traveling tournament problem\",\"authors\":\"Marije R. Siemann, Matthias Walter\",\"doi\":\"10.1016/j.disopt.2022.100741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull as well as of faces induced by model inequalities. Moreover, we introduce a new class of inequalities and show that they are facet-defining. Finally, we evaluate the impact of these inequalities on the linear programming bounds.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"46 \",\"pages\":\"Article 100741\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000469/pdfft?md5=2782e081b2be6a05c56eac20c9af53c2&pid=1-s2.0-S1572528622000469-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000469\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000469","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A polyhedral study for the cubic formulation of the unconstrained traveling tournament problem
We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull as well as of faces induced by model inequalities. Moreover, we introduce a new class of inequalities and show that they are facet-defining. Finally, we evaluate the impact of these inequalities on the linear programming bounds.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.