{"title":"块结构整数规划:我们可以不使用最大系数进行参数化吗?","authors":"Hua Chen , Lin Chen , Guochuan Zhang","doi":"10.1016/j.disopt.2022.100743","DOIUrl":null,"url":null,"abstract":"<div><p>We consider 4-block <span><math><mi>n</mi></math></span><span>-fold integer programming, which can be written as </span><span><math><mrow><mo>max</mo><mrow><mo>{</mo><mi>w</mi><mi>⋅</mi><mi>x</mi><mo>:</mo><mi>H</mi><mi>x</mi><mo>=</mo><mi>b</mi><mo>,</mo><mi>l</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where the constraint matrix <span><math><mi>H</mi></math></span> is composed of small matrices <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></mrow></math></span> such that the first row of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span>, the first column of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, the main diagonal of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>,</mo><mi>A</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span>, and all the other entries are 0. There are <span><math><mi>n</mi></math></span> copies of <span><math><mi>D</mi></math></span>, <span><math><mi>B</mi></math></span>, and <span><math><mi>A</mi></math></span>. The special case where <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span> is known as <span><math><mi>n</mi></math></span>-fold integer programming.</p><p>Prior algorithmic results for 4-block <span><math><mi>n</mi></math></span>-fold integer programming and its special cases usually take <span><math><mi>Δ</mi></math></span>, the largest absolute value among entries of <span><math><mi>H</mi></math></span>, as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming <span><math><mrow><mtext>P</mtext><mo>≠</mo><mtext>NP</mtext></mrow></math></span>, this is not possible even if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span>. However, this becomes possible if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow></msup></mrow></math></span>, or more generally if <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>×</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> and the rank of matrix <span><math><mi>A</mi></math></span> satisfies that <span><math><mrow><mtext>rank</mtext><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Block-structured integer programming: Can we parameterize without the largest coefficient?\",\"authors\":\"Hua Chen , Lin Chen , Guochuan Zhang\",\"doi\":\"10.1016/j.disopt.2022.100743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider 4-block <span><math><mi>n</mi></math></span><span>-fold integer programming, which can be written as </span><span><math><mrow><mo>max</mo><mrow><mo>{</mo><mi>w</mi><mi>⋅</mi><mi>x</mi><mo>:</mo><mi>H</mi><mi>x</mi><mo>=</mo><mi>b</mi><mo>,</mo><mi>l</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where the constraint matrix <span><math><mi>H</mi></math></span> is composed of small matrices <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></mrow></math></span> such that the first row of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span>, the first column of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, the main diagonal of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>,</mo><mi>A</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span>, and all the other entries are 0. There are <span><math><mi>n</mi></math></span> copies of <span><math><mi>D</mi></math></span>, <span><math><mi>B</mi></math></span>, and <span><math><mi>A</mi></math></span>. The special case where <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span> is known as <span><math><mi>n</mi></math></span>-fold integer programming.</p><p>Prior algorithmic results for 4-block <span><math><mi>n</mi></math></span>-fold integer programming and its special cases usually take <span><math><mi>Δ</mi></math></span>, the largest absolute value among entries of <span><math><mi>H</mi></math></span>, as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming <span><math><mrow><mtext>P</mtext><mo>≠</mo><mtext>NP</mtext></mrow></math></span>, this is not possible even if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span>. However, this becomes possible if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow></msup></mrow></math></span>, or more generally if <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>×</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> and the rank of matrix <span><math><mi>A</mi></math></span> satisfies that <span><math><mrow><mtext>rank</mtext><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000482\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000482","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Block-structured integer programming: Can we parameterize without the largest coefficient?
We consider 4-block -fold integer programming, which can be written as , where the constraint matrix is composed of small matrices such that the first row of is , the first column of is , the main diagonal of is , and all the other entries are 0. There are copies of , , and . The special case where is known as -fold integer programming.
Prior algorithmic results for 4-block -fold integer programming and its special cases usually take , the largest absolute value among entries of , as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming , this is not possible even if and . However, this becomes possible if or , or more generally if , and the rank of matrix satisfies that .
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.