块结构整数规划:我们可以不使用最大系数进行参数化吗?

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hua Chen , Lin Chen , Guochuan Zhang
{"title":"块结构整数规划:我们可以不使用最大系数进行参数化吗?","authors":"Hua Chen ,&nbsp;Lin Chen ,&nbsp;Guochuan Zhang","doi":"10.1016/j.disopt.2022.100743","DOIUrl":null,"url":null,"abstract":"<div><p>We consider 4-block <span><math><mi>n</mi></math></span><span>-fold integer programming, which can be written as </span><span><math><mrow><mo>max</mo><mrow><mo>{</mo><mi>w</mi><mi>⋅</mi><mi>x</mi><mo>:</mo><mi>H</mi><mi>x</mi><mo>=</mo><mi>b</mi><mo>,</mo><mi>l</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where the constraint matrix <span><math><mi>H</mi></math></span> is composed of small matrices <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></mrow></math></span> such that the first row of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span>, the first column of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, the main diagonal of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>,</mo><mi>A</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span>, and all the other entries are 0. There are <span><math><mi>n</mi></math></span> copies of <span><math><mi>D</mi></math></span>, <span><math><mi>B</mi></math></span>, and <span><math><mi>A</mi></math></span>. The special case where <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span> is known as <span><math><mi>n</mi></math></span>-fold integer programming.</p><p>Prior algorithmic results for 4-block <span><math><mi>n</mi></math></span>-fold integer programming and its special cases usually take <span><math><mi>Δ</mi></math></span>, the largest absolute value among entries of <span><math><mi>H</mi></math></span>, as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming <span><math><mrow><mtext>P</mtext><mo>≠</mo><mtext>NP</mtext></mrow></math></span>, this is not possible even if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span>. However, this becomes possible if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow></msup></mrow></math></span>, or more generally if <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>×</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> and the rank of matrix <span><math><mi>A</mi></math></span> satisfies that <span><math><mrow><mtext>rank</mtext><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Block-structured integer programming: Can we parameterize without the largest coefficient?\",\"authors\":\"Hua Chen ,&nbsp;Lin Chen ,&nbsp;Guochuan Zhang\",\"doi\":\"10.1016/j.disopt.2022.100743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider 4-block <span><math><mi>n</mi></math></span><span>-fold integer programming, which can be written as </span><span><math><mrow><mo>max</mo><mrow><mo>{</mo><mi>w</mi><mi>⋅</mi><mi>x</mi><mo>:</mo><mi>H</mi><mi>x</mi><mo>=</mo><mi>b</mi><mo>,</mo><mi>l</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where the constraint matrix <span><math><mi>H</mi></math></span> is composed of small matrices <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></mrow></math></span> such that the first row of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span>, the first column of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>, the main diagonal of <span><math><mi>H</mi></math></span> is <span><math><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>,</mo><mi>A</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span>, and all the other entries are 0. There are <span><math><mi>n</mi></math></span> copies of <span><math><mi>D</mi></math></span>, <span><math><mi>B</mi></math></span>, and <span><math><mi>A</mi></math></span>. The special case where <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span> is known as <span><math><mi>n</mi></math></span>-fold integer programming.</p><p>Prior algorithmic results for 4-block <span><math><mi>n</mi></math></span>-fold integer programming and its special cases usually take <span><math><mi>Δ</mi></math></span>, the largest absolute value among entries of <span><math><mi>H</mi></math></span>, as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming <span><math><mrow><mtext>P</mtext><mo>≠</mo><mtext>NP</mtext></mrow></math></span>, this is not possible even if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mi>C</mi><mo>=</mo><mn>0</mn></mrow></math></span>. However, this becomes possible if <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow></msup></mrow></math></span>, or more generally if <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>×</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> and the rank of matrix <span><math><mi>A</mi></math></span> satisfies that <span><math><mrow><mtext>rank</mtext><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000482\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000482","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

考虑4块n重整数规划,可写成max{w·x:Hx=b,l≤x≤u,x∈ZN},其中约束矩阵H由小矩阵A, b, C,D组成,使得H的第一行为(C,D,D,…,D), H的第一列为(C, b, b,…,b), H的主对角线为(C,A,A,…,A),其他所有项均为0。D、B和a有n个副本。B=C=0的特殊情况称为n倍整数规划。先前的4块n重整数规划及其特殊情况的算法结果通常将H的条目中绝对值最大的Δ作为参数的一部分。本文探讨了当小矩阵的行数和列数一定时,多项式求解问题的可能性。我们证明,假设P≠NP,这是不可能的,即使A=(1,1,Δ)和B=C=0。然而,如果A=(1,…,1)或A∈Z1×2,或者更一般地说,如果A∈ZsA×tA, tA=sA+1并且矩阵A的秩满足秩(A)=sA,则这是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-structured integer programming: Can we parameterize without the largest coefficient?

We consider 4-block n-fold integer programming, which can be written as max{wx:Hx=b,lxu,xZN}, where the constraint matrix H is composed of small matrices A,B,C,D such that the first row of H is (C,D,D,,D), the first column of H is (C,B,B,,B), the main diagonal of H is (C,A,A,,A), and all the other entries are 0. There are n copies of D, B, and A. The special case where B=C=0 is known as n-fold integer programming.

Prior algorithmic results for 4-block n-fold integer programming and its special cases usually take Δ, the largest absolute value among entries of H, as part of the parameters. In this paper, we explore the possibility of solving the problems polynomially when the number of rows and columns of the small matrices are constant. We show that, assuming PNP, this is not possible even if A=(1,1,Δ) and B=C=0. However, this becomes possible if A=(1,,1) or AZ1×2, or more generally if AZsA×tA, tA=sA+1 and the rank of matrix A satisfies that rank(A)=sA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信