纳米晶α-Fe2O3:用于w-LED应用和废水处理的超顺磁性材料

IF 2.218 Q2 Chemistry
Mahesh Gaidhane , Deepak Taikar , Pravin Gaidhane , Kalpana Nagde
{"title":"纳米晶α-Fe2O3:用于w-LED应用和废水处理的超顺磁性材料","authors":"Mahesh Gaidhane ,&nbsp;Deepak Taikar ,&nbsp;Pravin Gaidhane ,&nbsp;Kalpana Nagde","doi":"10.1016/j.cdc.2023.101083","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline α-Fe<sub>2</sub>O<sub>3</sub> was synthesized by sol-gel technique and then characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM), and photoluminescence (PL) techniques. The X-ray powder diffraction analysis confirmed the formation of α-Fe<sub>2</sub>O<sub>3</sub>. Electron microscopy showed spherical morphologies with an average particle size of 30–40 nm. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Furthermore, PL emission spectra showed an intense broad emission band centered at 570 nm with 393 nm excitation, indicating that it can be used for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles was analyzed, which exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.</p></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"47 ","pages":"Article 101083"},"PeriodicalIF":2.2180,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocrystalline α-Fe2O3: A superparamagnetic material for w-LED application and waste water treatment\",\"authors\":\"Mahesh Gaidhane ,&nbsp;Deepak Taikar ,&nbsp;Pravin Gaidhane ,&nbsp;Kalpana Nagde\",\"doi\":\"10.1016/j.cdc.2023.101083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocrystalline α-Fe<sub>2</sub>O<sub>3</sub> was synthesized by sol-gel technique and then characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM), and photoluminescence (PL) techniques. The X-ray powder diffraction analysis confirmed the formation of α-Fe<sub>2</sub>O<sub>3</sub>. Electron microscopy showed spherical morphologies with an average particle size of 30–40 nm. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Furthermore, PL emission spectra showed an intense broad emission band centered at 570 nm with 393 nm excitation, indicating that it can be used for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles was analyzed, which exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.</p></div>\",\"PeriodicalId\":269,\"journal\":{\"name\":\"Chemical Data Collections\",\"volume\":\"47 \",\"pages\":\"Article 101083\"},\"PeriodicalIF\":2.2180,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Data Collections\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405830023000940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405830023000940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法制备了α-Fe2O3纳米晶,并用x射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外光谱(FTIR)、振动样品磁强学(VSM)和光致发光(PL)技术对其进行了表征。x射线粉末衍射分析证实了α-Fe2O3的形成。电镜显示为球形,平均粒径为30-40 nm。VSM研究表明合成的纳米颗粒具有超顺磁性。此外,在393 nm激发下,PL发射光谱显示出以570 nm为中心的强宽发射带,表明该材料可用于w-LED。计算了所制备材料的cie -色度色坐标。对α-Fe2O3纳米粒子的光催化活性进行了分析,结果表明α-Fe2O3纳米粒子对水溶液中的AO7具有良好的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocrystalline α-Fe2O3: A superparamagnetic material for w-LED application and waste water treatment

Nanocrystalline α-Fe2O3: A superparamagnetic material for w-LED application and waste water treatment

Nanocrystalline α-Fe2O3 was synthesized by sol-gel technique and then characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM), and photoluminescence (PL) techniques. The X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30–40 nm. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Furthermore, PL emission spectra showed an intense broad emission band centered at 570 nm with 393 nm excitation, indicating that it can be used for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed, which exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Data Collections
Chemical Data Collections Chemistry-Chemistry (all)
CiteScore
6.10
自引率
0.00%
发文量
169
审稿时长
24 days
期刊介绍: Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信