在网格连接的处理器阵列上解决树问题

Q4 Mathematics
Mikhail J. Atallah, Susanne E. Hambrusch
{"title":"在网格连接的处理器阵列上解决树问题","authors":"Mikhail J. Atallah,&nbsp;Susanne E. Hambrusch","doi":"10.1016/S0019-9958(86)80046-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present techniques that result in <span><math><mrow><mi>O</mi><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></math></span> time algorithms for computing many properties and functions of an <em>n</em>-node forest stored in an <span><math><mrow><msqrt><mi>n</mi></msqrt><mo>×</mo><msqrt><mi>n</mi></msqrt></mrow></math></span> mesh of processors. Our algorithms include computing simple properties like the depth, the height, the number of descendents, the preorder (resp. postorder, inorder) number of every node, and a solution to the more complex problem of computing the Minimax value of a game tree. Our algorithms are asymptotically optimal since any nontrivial computation will require <span><math><mrow><mi>Ω</mi><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></math></span> time on the mesh. All of our algorithms generalize to higher dimensional meshes.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1986-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80046-8","citationCount":"79","resultStr":"{\"title\":\"Solving tree problems on a mesh-connected processor array\",\"authors\":\"Mikhail J. Atallah,&nbsp;Susanne E. Hambrusch\",\"doi\":\"10.1016/S0019-9958(86)80046-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we present techniques that result in <span><math><mrow><mi>O</mi><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></math></span> time algorithms for computing many properties and functions of an <em>n</em>-node forest stored in an <span><math><mrow><msqrt><mi>n</mi></msqrt><mo>×</mo><msqrt><mi>n</mi></msqrt></mrow></math></span> mesh of processors. Our algorithms include computing simple properties like the depth, the height, the number of descendents, the preorder (resp. postorder, inorder) number of every node, and a solution to the more complex problem of computing the Minimax value of a game tree. Our algorithms are asymptotically optimal since any nontrivial computation will require <span><math><mrow><mi>Ω</mi><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></math></span> time on the mesh. All of our algorithms generalize to higher dimensional meshes.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80046-8\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 79

摘要

在本文中,我们提出了一些技术,这些技术可以产生O(n)时间算法来计算存储在n×n处理器网格中的n节点森林的许多属性和函数。我们的算法包括计算简单的属性,如深度,高度,后代的数量,预顺序(响应)。每个节点的顺序数,以及计算游戏树的极大极小值这一更复杂问题的解决方案。我们的算法是渐近最优的,因为任何非平凡的计算都需要在网格上花费Ω(n)时间。我们所有的算法都可以推广到高维网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving tree problems on a mesh-connected processor array

In this paper we present techniques that result in O(n) time algorithms for computing many properties and functions of an n-node forest stored in an n×n mesh of processors. Our algorithms include computing simple properties like the depth, the height, the number of descendents, the preorder (resp. postorder, inorder) number of every node, and a solution to the more complex problem of computing the Minimax value of a game tree. Our algorithms are asymptotically optimal since any nontrivial computation will require Ω(n) time on the mesh. All of our algorithms generalize to higher dimensional meshes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信