{"title":"近乎Kähler流形上的rita- schwinger场","authors":"Soma Ohno , Takuma Tomihisa","doi":"10.1016/j.difgeo.2023.102068","DOIUrl":null,"url":null,"abstract":"<div><p>We study Rarita-Schwinger fields on 6-dimensional compact strict nearly Kähler manifolds. In order to investigate them, we clarify the relationship between some differential operators for the Hermitian connection and the Levi-Civita connection. As a result, we show that the space of Rarita-Schwinger fields coincides with the space of harmonic 3-forms. Applying the same technique to deformation theory, we also find that the space of infinitesimal deformations of Killing spinors coincides with the direct sum of a certain eigenspace of the Laplace operator and the space of Killing spinors.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102068"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224523000943/pdfft?md5=630b11c08c25cdf884db86fa0e59240a&pid=1-s2.0-S0926224523000943-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Rarita-Schwinger fields on nearly Kähler manifolds\",\"authors\":\"Soma Ohno , Takuma Tomihisa\",\"doi\":\"10.1016/j.difgeo.2023.102068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study Rarita-Schwinger fields on 6-dimensional compact strict nearly Kähler manifolds. In order to investigate them, we clarify the relationship between some differential operators for the Hermitian connection and the Levi-Civita connection. As a result, we show that the space of Rarita-Schwinger fields coincides with the space of harmonic 3-forms. Applying the same technique to deformation theory, we also find that the space of infinitesimal deformations of Killing spinors coincides with the direct sum of a certain eigenspace of the Laplace operator and the space of Killing spinors.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102068\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000943/pdfft?md5=630b11c08c25cdf884db86fa0e59240a&pid=1-s2.0-S0926224523000943-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000943\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000943","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rarita-Schwinger fields on nearly Kähler manifolds
We study Rarita-Schwinger fields on 6-dimensional compact strict nearly Kähler manifolds. In order to investigate them, we clarify the relationship between some differential operators for the Hermitian connection and the Levi-Civita connection. As a result, we show that the space of Rarita-Schwinger fields coincides with the space of harmonic 3-forms. Applying the same technique to deformation theory, we also find that the space of infinitesimal deformations of Killing spinors coincides with the direct sum of a certain eigenspace of the Laplace operator and the space of Killing spinors.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.