{"title":"固定置信度社区模式估计","authors":"Meera Pai, Nikhil Karamchandani, Jayakrishnan Nair","doi":"10.1016/j.peva.2023.102379","DOIUrl":null,"url":null,"abstract":"<div><p>Our aim is to estimate the largest community (a.k.a., mode) in a population composed of multiple disjoint communities. This estimation is performed in a fixed confidence setting via sequential sampling of individuals with replacement. We consider two sampling models: (i) an identityless model, wherein only the community of each sampled individual is revealed, and (ii) an identity-based model, wherein the learner is able to discern whether or not each sampled individual has been sampled before, in addition to the community of that individual. The former model corresponds to the classical problem of identifying the mode of a discrete distribution, whereas the latter seeks to capture the utility of identity information in mode estimation. For each of these models, we establish information theoretic lower bounds on the expected number of samples needed to meet the prescribed confidence level, and propose sound algorithms with a sample complexity that is provably asymptotically optimal. Our analysis highlights that identity information can indeed be utilized to improve the efficiency of community mode estimation.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"162 ","pages":"Article 102379"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed confidence community mode estimation\",\"authors\":\"Meera Pai, Nikhil Karamchandani, Jayakrishnan Nair\",\"doi\":\"10.1016/j.peva.2023.102379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our aim is to estimate the largest community (a.k.a., mode) in a population composed of multiple disjoint communities. This estimation is performed in a fixed confidence setting via sequential sampling of individuals with replacement. We consider two sampling models: (i) an identityless model, wherein only the community of each sampled individual is revealed, and (ii) an identity-based model, wherein the learner is able to discern whether or not each sampled individual has been sampled before, in addition to the community of that individual. The former model corresponds to the classical problem of identifying the mode of a discrete distribution, whereas the latter seeks to capture the utility of identity information in mode estimation. For each of these models, we establish information theoretic lower bounds on the expected number of samples needed to meet the prescribed confidence level, and propose sound algorithms with a sample complexity that is provably asymptotically optimal. Our analysis highlights that identity information can indeed be utilized to improve the efficiency of community mode estimation.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"162 \",\"pages\":\"Article 102379\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000494\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000494","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Our aim is to estimate the largest community (a.k.a., mode) in a population composed of multiple disjoint communities. This estimation is performed in a fixed confidence setting via sequential sampling of individuals with replacement. We consider two sampling models: (i) an identityless model, wherein only the community of each sampled individual is revealed, and (ii) an identity-based model, wherein the learner is able to discern whether or not each sampled individual has been sampled before, in addition to the community of that individual. The former model corresponds to the classical problem of identifying the mode of a discrete distribution, whereas the latter seeks to capture the utility of identity information in mode estimation. For each of these models, we establish information theoretic lower bounds on the expected number of samples needed to meet the prescribed confidence level, and propose sound algorithms with a sample complexity that is provably asymptotically optimal. Our analysis highlights that identity information can indeed be utilized to improve the efficiency of community mode estimation.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science