基数约束的树在不同条件下的连通平衡分区

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Roberto Cordone , Davide Franchi , Andrea Scozzari
{"title":"基数约束的树在不同条件下的连通平衡分区","authors":"Roberto Cordone ,&nbsp;Davide Franchi ,&nbsp;Andrea Scozzari","doi":"10.1016/j.disopt.2022.100742","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the problem of partitioning a tree with <span><math><mi>n</mi></math></span> weighted vertices into <span><math><mi>p</mi></math></span> connected components. For each component, we measure its <em>gap</em>, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space algorithm for this problem. Then, we generalize it, requiring a minimum of <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> nodes in each connected component, and provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of <span><math><mi>ϵ</mi></math></span> and requires <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"46 ","pages":"Article 100742"},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cardinality constrained connected balanced partitions of trees under different criteria\",\"authors\":\"Roberto Cordone ,&nbsp;Davide Franchi ,&nbsp;Andrea Scozzari\",\"doi\":\"10.1016/j.disopt.2022.100742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the problem of partitioning a tree with <span><math><mi>n</mi></math></span> weighted vertices into <span><math><mi>p</mi></math></span> connected components. For each component, we measure its <em>gap</em>, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space algorithm for this problem. Then, we generalize it, requiring a minimum of <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> nodes in each connected component, and provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of <span><math><mi>ϵ</mi></math></span> and requires <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"46 \",\"pages\":\"Article 100742\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000470\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000470","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一棵有n个加权顶点的树划分为p个连通分量的问题。对于每个组件,我们测量它的间隙,即其顶点的最大和最小权值之间的差异,目的是最小化这些差异的总和。我们提出了一个O(n3p2)时间和O(n3p)空间的算法。然后,我们对其进行推广,要求每个连接的组件中至少有1个节点,并提供O(n3p2ϵ2)时间和O(n3p御)空间算法来解决这个新问题版本。我们提供了涉及树拓扑的分析的改进,并改进了针对顶点的权重具有堆结构的特殊情况的算法。所有提出的算法都可以直接扩展到其他类似的目标函数。实际上,对于最小化每个组件中最小节点数的最大间隙的问题,我们提出了一个独立于λ的算法,需要O(n2logp2)时间和O(n2p)空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardinality constrained connected balanced partitions of trees under different criteria

In this paper we study the problem of partitioning a tree with n weighted vertices into p connected components. For each component, we measure its gap, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an O(n3p2) time and O(n3p) space algorithm for this problem. Then, we generalize it, requiring a minimum of ϵ1 nodes in each connected component, and provide an O(n3p2ϵ2) time and O(n3pϵ) space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of ϵ and requires O(n2lognp2) time and O(n2p) space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信