Roberto Cordone , Davide Franchi , Andrea Scozzari
{"title":"基数约束的树在不同条件下的连通平衡分区","authors":"Roberto Cordone , Davide Franchi , Andrea Scozzari","doi":"10.1016/j.disopt.2022.100742","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the problem of partitioning a tree with <span><math><mi>n</mi></math></span> weighted vertices into <span><math><mi>p</mi></math></span> connected components. For each component, we measure its <em>gap</em>, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space algorithm for this problem. Then, we generalize it, requiring a minimum of <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> nodes in each connected component, and provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of <span><math><mi>ϵ</mi></math></span> and requires <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cardinality constrained connected balanced partitions of trees under different criteria\",\"authors\":\"Roberto Cordone , Davide Franchi , Andrea Scozzari\",\"doi\":\"10.1016/j.disopt.2022.100742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the problem of partitioning a tree with <span><math><mi>n</mi></math></span> weighted vertices into <span><math><mi>p</mi></math></span> connected components. For each component, we measure its <em>gap</em>, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space algorithm for this problem. Then, we generalize it, requiring a minimum of <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> nodes in each connected component, and provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>p</mi><mi>ϵ</mi><mo>)</mo></mrow></mrow></math></span> space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of <span><math><mi>ϵ</mi></math></span> and requires <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> time and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>p</mi><mo>)</mo></mrow></mrow></math></span> space.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000470\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000470","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Cardinality constrained connected balanced partitions of trees under different criteria
In this paper we study the problem of partitioning a tree with weighted vertices into connected components. For each component, we measure its gap, that is, the difference between the maximum and the minimum weight of its vertices, with the aim of minimizing the sum of such differences. We present an time and space algorithm for this problem. Then, we generalize it, requiring a minimum of nodes in each connected component, and provide an time and space algorithm to solve this new problem version. We provide a refinement of our analysis involving the topology of the tree and an improvement of the algorithms for the special case in which the weights of the vertices have a heap structure. All presented algorithms can be straightforwardly extended to other similar objective functions. Actually, for the problem of minimizing the maximum gap with a minimum number of nodes in each component, we propose an algorithm which is independent of and requires time and space.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.