临床免费文本到HPO代码

Rare Pub Date : 2023-01-01 DOI:10.1016/j.rare.2023.100007
Gabrielle Stinton , Jane A. Lieviant , Sylvia Kam , Jiin Ying Lim , Jasmine Chew-Yin Goh , Weng Khong Lim , Gareth Baynam , Tele Tan , Duc-Son Pham , Saumya Shekhar Jamuar
{"title":"临床免费文本到HPO代码","authors":"Gabrielle Stinton ,&nbsp;Jane A. Lieviant ,&nbsp;Sylvia Kam ,&nbsp;Jiin Ying Lim ,&nbsp;Jasmine Chew-Yin Goh ,&nbsp;Weng Khong Lim ,&nbsp;Gareth Baynam ,&nbsp;Tele Tan ,&nbsp;Duc-Son Pham ,&nbsp;Saumya Shekhar Jamuar","doi":"10.1016/j.rare.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Leveraging Artificial Intelligence (AI) within the rare disease diagnostic odyssey can facilitate a decrease in diagnostic times and an increase in diagnostic rates. Among the steps involved in the odyssey, this project focused on utilizing AI to automate the standardized capturing of clinical free text into Human Phenotype Ontology (HPO) codes. This research project was conducted at both the KK Women’s and Children’s Hospital (KKH), Singapore and the Rare Care Centre at Perth Children’s Hospital, Western Australia (WA), via the Curtin New Colombo Plan (NCP) Scholarship. The outcome of the project saw the development of a Streamlit web application that utilized two (2) pre-trained AI models – PhenoTagger and PhenoBERT – with a human-in-the-loop design. A case study conducted with ten (10) de-identified clinical reports demonstrated a reduction in the HPO extraction task time from ten (10) to twenty (20) minutes per report to less than five (5) minutes.</p></div>","PeriodicalId":101058,"journal":{"name":"Rare","volume":"1 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950008723000078/pdfft?md5=dfbe25a04a0a3221c87b0b17f2bc30ba&pid=1-s2.0-S2950008723000078-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Clinical free text to HPO codes\",\"authors\":\"Gabrielle Stinton ,&nbsp;Jane A. Lieviant ,&nbsp;Sylvia Kam ,&nbsp;Jiin Ying Lim ,&nbsp;Jasmine Chew-Yin Goh ,&nbsp;Weng Khong Lim ,&nbsp;Gareth Baynam ,&nbsp;Tele Tan ,&nbsp;Duc-Son Pham ,&nbsp;Saumya Shekhar Jamuar\",\"doi\":\"10.1016/j.rare.2023.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leveraging Artificial Intelligence (AI) within the rare disease diagnostic odyssey can facilitate a decrease in diagnostic times and an increase in diagnostic rates. Among the steps involved in the odyssey, this project focused on utilizing AI to automate the standardized capturing of clinical free text into Human Phenotype Ontology (HPO) codes. This research project was conducted at both the KK Women’s and Children’s Hospital (KKH), Singapore and the Rare Care Centre at Perth Children’s Hospital, Western Australia (WA), via the Curtin New Colombo Plan (NCP) Scholarship. The outcome of the project saw the development of a Streamlit web application that utilized two (2) pre-trained AI models – PhenoTagger and PhenoBERT – with a human-in-the-loop design. A case study conducted with ten (10) de-identified clinical reports demonstrated a reduction in the HPO extraction task time from ten (10) to twenty (20) minutes per report to less than five (5) minutes.</p></div>\",\"PeriodicalId\":101058,\"journal\":{\"name\":\"Rare\",\"volume\":\"1 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950008723000078/pdfft?md5=dfbe25a04a0a3221c87b0b17f2bc30ba&pid=1-s2.0-S2950008723000078-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950008723000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950008723000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在罕见病诊断过程中利用人工智能(AI)可以缩短诊断时间,提高诊断率。在奥德赛所涉及的步骤中,该项目侧重于利用人工智能自动将临床自由文本标准化捕获为人类表型本体(HPO)代码。该研究项目是通过科廷新科伦坡计划(NCP)奖学金在新加坡KK妇女儿童医院(KKH)和西澳大利亚州珀斯儿童医院(WA)的罕见护理中心进行的。该项目的成果是开发了一个Streamlit web应用程序,该应用程序使用了两个预训练的人工智能模型——PhenoTagger和PhenoBERT——并采用了人在循环的设计。一项由十(10)份去识别临床报告进行的案例研究表明,HPO提取任务时间从每份报告的十(10)到二十(20)分钟减少到不到五(5)分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Clinical free text to HPO codes

Clinical free text to HPO codes

Leveraging Artificial Intelligence (AI) within the rare disease diagnostic odyssey can facilitate a decrease in diagnostic times and an increase in diagnostic rates. Among the steps involved in the odyssey, this project focused on utilizing AI to automate the standardized capturing of clinical free text into Human Phenotype Ontology (HPO) codes. This research project was conducted at both the KK Women’s and Children’s Hospital (KKH), Singapore and the Rare Care Centre at Perth Children’s Hospital, Western Australia (WA), via the Curtin New Colombo Plan (NCP) Scholarship. The outcome of the project saw the development of a Streamlit web application that utilized two (2) pre-trained AI models – PhenoTagger and PhenoBERT – with a human-in-the-loop design. A case study conducted with ten (10) de-identified clinical reports demonstrated a reduction in the HPO extraction task time from ten (10) to twenty (20) minutes per report to less than five (5) minutes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信