MixMHCpred2.2和PRIME2.0改进了抗原呈递和TCR识别的预测,揭示了有效的SARS-CoV-2 CD8+ t细胞表位。

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
David Gfeller, Julien Schmidt, Giancarlo Croce, Philippe Guillaume, Sara Bobisse, Raphael Genolet, Lise Queiroz, Julien Cesbron, Julien Racle, Alexandre Harari
{"title":"MixMHCpred2.2和PRIME2.0改进了抗原呈递和TCR识别的预测,揭示了有效的SARS-CoV-2 CD8+ t细胞表位。","authors":"David Gfeller,&nbsp;Julien Schmidt,&nbsp;Giancarlo Croce,&nbsp;Philippe Guillaume,&nbsp;Sara Bobisse,&nbsp;Raphael Genolet,&nbsp;Lise Queiroz,&nbsp;Julien Cesbron,&nbsp;Julien Racle,&nbsp;Alexandre Harari","doi":"10.1016/j.cels.2022.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>The recognition of pathogen or cancer-specific epitopes by CD8<sup>+</sup> T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8<sup>+</sup> T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 1","pages":"72-83.e5"},"PeriodicalIF":9.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8<sup>+</sup> T-cell epitopes.\",\"authors\":\"David Gfeller,&nbsp;Julien Schmidt,&nbsp;Giancarlo Croce,&nbsp;Philippe Guillaume,&nbsp;Sara Bobisse,&nbsp;Raphael Genolet,&nbsp;Lise Queiroz,&nbsp;Julien Cesbron,&nbsp;Julien Racle,&nbsp;Alexandre Harari\",\"doi\":\"10.1016/j.cels.2022.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recognition of pathogen or cancer-specific epitopes by CD8<sup>+</sup> T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8<sup>+</sup> T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 1\",\"pages\":\"72-83.e5\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2022.12.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.12.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

CD8+ T细胞对病原体或癌症特异性表位的识别对于清除感染和对癌症免疫治疗的反应至关重要。这一过程需要表位呈递到I类人白细胞抗原(HLA-I)分子上,并被t细胞受体(TCR)识别。捕捉免疫识别这两个方面的机器学习模型是改进表位预测的关键。在这里,我们组装了自然呈现的hla - 1配体和实验验证的新表位的高质量数据集。然后,我们将这些数据整合到一个精细的计算框架中,以预测抗原呈递(MixMHCpred2.2)和TCR识别(PRIME2.0)。我们的训练数据的深度和算法的发展导致hla - 1配体和新表位的预测得到改善。将我们的工具前瞻性地应用于SARS-CoV-2蛋白发现了几个表位。TCR测序鉴定了效应/记忆CD8+ T细胞对这些表位之一的单克隆反应以及与其他冠状病毒同源肽的交叉反应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes.

The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信