{"title":"基于路径切片和重加权的疲劳裂纹扩展统计学习预测","authors":"Yingjie Zhao, Yong Liu, Zhiping Xu","doi":"10.1016/j.taml.2023.100477","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design. However, fatigue often involves entangled complexities of material microstructures and service conditions, making diagnosis and prognosis of fatigue damage challenging. We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties. Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations. Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth. Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events. The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns. The end-to-end approach is validated by representative examples with fatigue cracks in plates, which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209503492300048X/pdfft?md5=18a2938c5343e7e3c0b851217dba8417&pid=1-s2.0-S209503492300048X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Statistical learning prediction of fatigue crack growth via path slicing and re-weighting\",\"authors\":\"Yingjie Zhao, Yong Liu, Zhiping Xu\",\"doi\":\"10.1016/j.taml.2023.100477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design. However, fatigue often involves entangled complexities of material microstructures and service conditions, making diagnosis and prognosis of fatigue damage challenging. We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties. Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations. Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth. Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events. The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns. The end-to-end approach is validated by representative examples with fatigue cracks in plates, which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209503492300048X/pdfft?md5=18a2938c5343e7e3c0b851217dba8417&pid=1-s2.0-S209503492300048X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209503492300048X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209503492300048X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Statistical learning prediction of fatigue crack growth via path slicing and re-weighting
Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design. However, fatigue often involves entangled complexities of material microstructures and service conditions, making diagnosis and prognosis of fatigue damage challenging. We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties. Digital libraries of fatigue crack patterns and the remaining life are constructed by high-fidelity physical simulations. Dimensionality reduction and neural network architectures are then used to learn the history dependence and nonlinearity of fatigue crack growth. Path-slicing and re-weighting techniques are introduced to handle the statistical noises and rare events. The predicted fatigue crack patterns are self-updated and self-corrected by the evolving crack patterns. The end-to-end approach is validated by representative examples with fatigue cracks in plates, which showcase the digital-twin scenario in real-time structural health monitoring and fatigue life prediction for maintenance management decision-making.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).