{"title":"利用格兰杰因果图对注意力网络进行故障检测和根本原因诊断","authors":"Yingxiang Liu , Behnam Jafarpour","doi":"10.1016/j.compchemeng.2023.108453","DOIUrl":null,"url":null,"abstract":"<div><p>Unsupervised data-driven methods are widely used for fault detection and diagnosis in modern industrial processes. However, accurately distinguishing faults from normal feedback control system adjustments and promptly identifying their root causes are among unresolved challenges. To address these issues, we propose a neural network model consisting of one-dimensional convolutional neural networks and a graph attention network (CNN-GAT) that uses a causal map derived from fault-free data using conditional Granger causality analysis. The CNN-GAT model produces a monitoring index that accurately reflects the operating conditions of the process and distinguishes faults from normal control adjustments. Using the causal map and prediction results from the CNN-GAT model, the root cause diagnosis can be performed promptly after faults are detected, providing operators with more time to address the fault. We demonstrate the performance of the proposed framework using the benchmark Tennessee Eastman process case studies and through comparison with other fault detection methods.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"180 ","pages":"Article 108453"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009813542300323X/pdfft?md5=c89ad4552f0f5ee0f0c29d6c43433c2e&pid=1-s2.0-S009813542300323X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graph attention network with Granger causality map for fault detection and root cause diagnosis\",\"authors\":\"Yingxiang Liu , Behnam Jafarpour\",\"doi\":\"10.1016/j.compchemeng.2023.108453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unsupervised data-driven methods are widely used for fault detection and diagnosis in modern industrial processes. However, accurately distinguishing faults from normal feedback control system adjustments and promptly identifying their root causes are among unresolved challenges. To address these issues, we propose a neural network model consisting of one-dimensional convolutional neural networks and a graph attention network (CNN-GAT) that uses a causal map derived from fault-free data using conditional Granger causality analysis. The CNN-GAT model produces a monitoring index that accurately reflects the operating conditions of the process and distinguishes faults from normal control adjustments. Using the causal map and prediction results from the CNN-GAT model, the root cause diagnosis can be performed promptly after faults are detected, providing operators with more time to address the fault. We demonstrate the performance of the proposed framework using the benchmark Tennessee Eastman process case studies and through comparison with other fault detection methods.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"180 \",\"pages\":\"Article 108453\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S009813542300323X/pdfft?md5=c89ad4552f0f5ee0f0c29d6c43433c2e&pid=1-s2.0-S009813542300323X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542300323X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542300323X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Graph attention network with Granger causality map for fault detection and root cause diagnosis
Unsupervised data-driven methods are widely used for fault detection and diagnosis in modern industrial processes. However, accurately distinguishing faults from normal feedback control system adjustments and promptly identifying their root causes are among unresolved challenges. To address these issues, we propose a neural network model consisting of one-dimensional convolutional neural networks and a graph attention network (CNN-GAT) that uses a causal map derived from fault-free data using conditional Granger causality analysis. The CNN-GAT model produces a monitoring index that accurately reflects the operating conditions of the process and distinguishes faults from normal control adjustments. Using the causal map and prediction results from the CNN-GAT model, the root cause diagnosis can be performed promptly after faults are detected, providing operators with more time to address the fault. We demonstrate the performance of the proposed framework using the benchmark Tennessee Eastman process case studies and through comparison with other fault detection methods.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.