回归深度中位数的非渐近稳健性分析

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yijun Zuo
{"title":"回归深度中位数的非渐近稳健性分析","authors":"Yijun Zuo","doi":"10.1016/j.jmva.2023.105247","DOIUrl":null,"url":null,"abstract":"<div><p>The maximum depth estimator (aka depth median) (<span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>) induced from regression depth (RD) of Rousseeuw and Hubert (1999) is one of the most prevailing estimators in regression. It possesses outstanding robustness similar to the univariate location counterpart. Indeed, <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> can, asymptotically, resist up to 33% contamination without breakdown, in contrast to the 0% for the traditional (least squares and least absolute deviations) estimators (see Van Aelst and Rousseeuw (2000)). The results from Van Aelst and Rousseeuw (2000) are pioneering, yet they are limited to regression-symmetric populations (with a strictly positive density), the <span><math><mi>ϵ</mi></math></span>-contamination, maximum-bias model, and in asymptotical sense. With a fixed finite-sample size practice, the most prevailing measure of robustness for estimators is the finite-sample breakdown point (FSBP) (Donoho and Huber, 1983). Despite many attempts made in the literature, only sporadic partial results on FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> were obtained whereas an exact FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> remained open in the last twenty-plus years. Furthermore, is the asymptotic breakdown value <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> (the limit of an increasing sequence of finite-sample breakdown values) relevant in the finite-sample practice? (Or what is the difference between the finite-sample and the limit breakdown values?). Such discussions are yet to be given in the literature. This article addresses the above issues, revealing an intrinsic connection between the regression depth of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> and the newly obtained exact FSBP. It justifies the employment of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> as a robust alternative to the traditional estimators and demonstrates the necessity and the merit of using the FSBP in finite-sample real practice.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"199 ","pages":"Article 105247"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000933/pdfft?md5=41b0163d4b47acc16c5399dda63160ea&pid=1-s2.0-S0047259X23000933-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Non-asymptotic robustness analysis of regression depth median\",\"authors\":\"Yijun Zuo\",\"doi\":\"10.1016/j.jmva.2023.105247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The maximum depth estimator (aka depth median) (<span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>) induced from regression depth (RD) of Rousseeuw and Hubert (1999) is one of the most prevailing estimators in regression. It possesses outstanding robustness similar to the univariate location counterpart. Indeed, <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> can, asymptotically, resist up to 33% contamination without breakdown, in contrast to the 0% for the traditional (least squares and least absolute deviations) estimators (see Van Aelst and Rousseeuw (2000)). The results from Van Aelst and Rousseeuw (2000) are pioneering, yet they are limited to regression-symmetric populations (with a strictly positive density), the <span><math><mi>ϵ</mi></math></span>-contamination, maximum-bias model, and in asymptotical sense. With a fixed finite-sample size practice, the most prevailing measure of robustness for estimators is the finite-sample breakdown point (FSBP) (Donoho and Huber, 1983). Despite many attempts made in the literature, only sporadic partial results on FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> were obtained whereas an exact FSBP for <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> remained open in the last twenty-plus years. Furthermore, is the asymptotic breakdown value <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> (the limit of an increasing sequence of finite-sample breakdown values) relevant in the finite-sample practice? (Or what is the difference between the finite-sample and the limit breakdown values?). Such discussions are yet to be given in the literature. This article addresses the above issues, revealing an intrinsic connection between the regression depth of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> and the newly obtained exact FSBP. It justifies the employment of <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>R</mi><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> as a robust alternative to the traditional estimators and demonstrates the necessity and the merit of using the FSBP in finite-sample real practice.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"199 \",\"pages\":\"Article 105247\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000933/pdfft?md5=41b0163d4b47acc16c5399dda63160ea&pid=1-s2.0-S0047259X23000933-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000933\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000933","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

由Rousseeuw和Hubert(1999)的回归深度(RD)导出的最大深度估计量(又称深度中位数)(βRD *)是回归中最流行的估计量之一。它具有与单变量定位对应物相似的出色鲁棒性。事实上,βRD *可以渐近地抵抗高达33%的污染而不破裂,而传统的(最小二乘和最小绝对偏差)估计器则为0%(见Van Aelst和Rousseeuw(2000))。Van Aelst和Rousseeuw(2000)的结果是开创性的,但它们仅限于回归对称种群(具有严格的正密度),ϵ-contamination,最大偏差模型和渐近意义。对于固定的有限样本大小的实践,对于估计器来说,最普遍的鲁棒性度量是有限样本击穿点(FSBP) (Donoho和Huber, 1983)。尽管在文献中做了许多尝试,但在βRD *的FSBP上只获得了零星的部分结果,而βRD *的确切FSBP在过去的20多年里仍然是开放的。此外,在有限样本实践中,渐近击穿值1/3(有限样本击穿值递增序列的极限)是否相关?(或者有限样本和极限击穿值之间有什么区别?)这样的讨论还没有在文献中给出。本文解决了上述问题,揭示了βRD *的回归深度与新获得的精确FSBP之间的内在联系。它证明了βRD *作为传统估计器的鲁棒替代,并证明了在有限样本实际实践中使用FSBP的必要性和优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-asymptotic robustness analysis of regression depth median

The maximum depth estimator (aka depth median) (βRD) induced from regression depth (RD) of Rousseeuw and Hubert (1999) is one of the most prevailing estimators in regression. It possesses outstanding robustness similar to the univariate location counterpart. Indeed, βRD can, asymptotically, resist up to 33% contamination without breakdown, in contrast to the 0% for the traditional (least squares and least absolute deviations) estimators (see Van Aelst and Rousseeuw (2000)). The results from Van Aelst and Rousseeuw (2000) are pioneering, yet they are limited to regression-symmetric populations (with a strictly positive density), the ϵ-contamination, maximum-bias model, and in asymptotical sense. With a fixed finite-sample size practice, the most prevailing measure of robustness for estimators is the finite-sample breakdown point (FSBP) (Donoho and Huber, 1983). Despite many attempts made in the literature, only sporadic partial results on FSBP for βRD were obtained whereas an exact FSBP for βRD remained open in the last twenty-plus years. Furthermore, is the asymptotic breakdown value 1/3 (the limit of an increasing sequence of finite-sample breakdown values) relevant in the finite-sample practice? (Or what is the difference between the finite-sample and the limit breakdown values?). Such discussions are yet to be given in the literature. This article addresses the above issues, revealing an intrinsic connection between the regression depth of βRD and the newly obtained exact FSBP. It justifies the employment of βRD as a robust alternative to the traditional estimators and demonstrates the necessity and the merit of using the FSBP in finite-sample real practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信