{"title":"利用深度神经网络获得的伪边缘区域分割人类牙齿图像中的单个牙齿","authors":"Seongeun Kim, Chang-Ock Lee","doi":"10.1016/j.image.2023.117076","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In human teeth images taken outside the oral cavity with a general optical camera, it is difficult to segment individual tooth due to common obstacles such as weak edges, intensity inhomogeneities and strong light reflections. In this work, we propose a method for segmenting individual tooth in human teeth images. The key to this method is to obtain pseudo edge-region using </span>deep neural networks. After an additional step to obtain </span>initial contours<span><span> for each tooth region, the individual tooth is segmented by applying active contour models. We also present a strategy using existing model-based methods for labeling the data required for </span>neural network training.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"120 ","pages":"Article 117076"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual tooth segmentation in human teeth images using pseudo edge-region obtained by deep neural networks\",\"authors\":\"Seongeun Kim, Chang-Ock Lee\",\"doi\":\"10.1016/j.image.2023.117076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>In human teeth images taken outside the oral cavity with a general optical camera, it is difficult to segment individual tooth due to common obstacles such as weak edges, intensity inhomogeneities and strong light reflections. In this work, we propose a method for segmenting individual tooth in human teeth images. The key to this method is to obtain pseudo edge-region using </span>deep neural networks. After an additional step to obtain </span>initial contours<span><span> for each tooth region, the individual tooth is segmented by applying active contour models. We also present a strategy using existing model-based methods for labeling the data required for </span>neural network training.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"120 \",\"pages\":\"Article 117076\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001583\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001583","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Individual tooth segmentation in human teeth images using pseudo edge-region obtained by deep neural networks
In human teeth images taken outside the oral cavity with a general optical camera, it is difficult to segment individual tooth due to common obstacles such as weak edges, intensity inhomogeneities and strong light reflections. In this work, we propose a method for segmenting individual tooth in human teeth images. The key to this method is to obtain pseudo edge-region using deep neural networks. After an additional step to obtain initial contours for each tooth region, the individual tooth is segmented by applying active contour models. We also present a strategy using existing model-based methods for labeling the data required for neural network training.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.