{"title":"二次优化:特别关注组合优化和二元二次问题的调查","authors":"Mirjam Dür , Franz Rendl","doi":"10.1016/j.ejco.2021.100021","DOIUrl":null,"url":null,"abstract":"<div><p>A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are linear programs (LP), second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, and copositive optimization. We review how tight bounds can be obtained by relaxing the copositivity constraint to semidefiniteness, and we discuss the effect that different modelling techniques have on the quality of the bounds. We also provide some new techniques for lifting linear constraints and show how these can be used for stable set and coloring relaxations.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100021"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440621001489/pdfft?md5=2fd9af7537cd98f646e5236b30d3d05f&pid=1-s2.0-S2192440621001489-main.pdf","citationCount":"16","resultStr":"{\"title\":\"Conic optimization: A survey with special focus on copositive optimization and binary quadratic problems\",\"authors\":\"Mirjam Dür , Franz Rendl\",\"doi\":\"10.1016/j.ejco.2021.100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are linear programs (LP), second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, and copositive optimization. We review how tight bounds can be obtained by relaxing the copositivity constraint to semidefiniteness, and we discuss the effect that different modelling techniques have on the quality of the bounds. We also provide some new techniques for lifting linear constraints and show how these can be used for stable set and coloring relaxations.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100021\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001489/pdfft?md5=2fd9af7537cd98f646e5236b30d3d05f&pid=1-s2.0-S2192440621001489-main.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Conic optimization: A survey with special focus on copositive optimization and binary quadratic problems
A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are linear programs (LP), second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, and copositive optimization. We review how tight bounds can be obtained by relaxing the copositivity constraint to semidefiniteness, and we discuss the effect that different modelling techniques have on the quality of the bounds. We also provide some new techniques for lifting linear constraints and show how these can be used for stable set and coloring relaxations.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.