基于坐标下降的多层超图拉普拉斯半监督学习

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Sara Venturini , Andrea Cristofari , Francesco Rinaldi , Francesco Tudisco
{"title":"基于坐标下降的多层超图拉普拉斯半监督学习","authors":"Sara Venturini ,&nbsp;Andrea Cristofari ,&nbsp;Francesco Rinaldi ,&nbsp;Francesco Tudisco","doi":"10.1016/j.ejco.2023.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Graph Semi-Supervised learning is an important data analysis tool, where given a graph and a set of labeled nodes, the aim is to infer the labels to the remaining unlabeled nodes. In this paper, we start by considering an optimization-based formulation of the problem for an undirected graph, and then we extend this formulation to multilayer hypergraphs. We solve the problem using different coordinate descent approaches and compare the results with the ones obtained by the classic gradient descent method. Experiments on synthetic and real-world datasets show the potential of using coordinate descent methods with suitable selection rules.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100079"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440623000230/pdfft?md5=6f643343ec1f2c6f80d72a373b75a084&pid=1-s2.0-S2192440623000230-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Laplacian-based semi-Supervised learning in multilayer hypergraphs by coordinate descent\",\"authors\":\"Sara Venturini ,&nbsp;Andrea Cristofari ,&nbsp;Francesco Rinaldi ,&nbsp;Francesco Tudisco\",\"doi\":\"10.1016/j.ejco.2023.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph Semi-Supervised learning is an important data analysis tool, where given a graph and a set of labeled nodes, the aim is to infer the labels to the remaining unlabeled nodes. In this paper, we start by considering an optimization-based formulation of the problem for an undirected graph, and then we extend this formulation to multilayer hypergraphs. We solve the problem using different coordinate descent approaches and compare the results with the ones obtained by the classic gradient descent method. Experiments on synthetic and real-world datasets show the potential of using coordinate descent methods with suitable selection rules.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000230/pdfft?md5=6f643343ec1f2c6f80d72a373b75a084&pid=1-s2.0-S2192440623000230-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

图半监督学习是一种重要的数据分析工具,它给出一个图和一组标记的节点,目的是推断剩余未标记节点的标签。在本文中,我们首先考虑了一个基于优化的无向图问题的表述,然后我们将这个表述推广到多层超图。采用不同的坐标下降法求解该问题,并与经典的梯度下降法求解结果进行了比较。在合成数据集和实际数据集上的实验表明,在合适的选择规则下使用坐标下降方法是有潜力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian-based semi-Supervised learning in multilayer hypergraphs by coordinate descent

Graph Semi-Supervised learning is an important data analysis tool, where given a graph and a set of labeled nodes, the aim is to infer the labels to the remaining unlabeled nodes. In this paper, we start by considering an optimization-based formulation of the problem for an undirected graph, and then we extend this formulation to multilayer hypergraphs. We solve the problem using different coordinate descent approaches and compare the results with the ones obtained by the classic gradient descent method. Experiments on synthetic and real-world datasets show the potential of using coordinate descent methods with suitable selection rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信