Reddi Rani L. , H.S. Anushree , H.C. Manjunatha , N. Sowmya , L. Seenappa , K.N. Sridhar , P.S. Damodhara Gupta
{"title":"改进的β衰变半经验公式","authors":"Reddi Rani L. , H.S. Anushree , H.C. Manjunatha , N. Sowmya , L. Seenappa , K.N. Sridhar , P.S. Damodhara Gupta","doi":"10.1016/j.physo.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>We attempted to improve semi-empirical equations for <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay in the atomic number range <span><math><mrow><mn>1</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>42</mn></mrow></math></span> and mass number range <span><math><mrow><mn>3</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>118</mn></mrow></math></span>. We suggested a semi-empirical formula in terms of an atomic number of daughter nuclei and decay energy in keV. We divided the nuclei into four categories: even(Z)-even(N), even(Z)-odd(N), odd(Z)-even(N), and odd(Z)-odd(N) to propose improved semi-empirical formulae. The existing equation values are compared to the experimental results. When compared to other semi-empirical equations accessible in the literature, the standard deviation produced from the current formula is lower. The improved semi-empirical formulas are of the first kind, requiring only an atomic number of daughter and decay energy during <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay. This study discovers a significance in predicting <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"17 ","pages":"Article 100187"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032623000522/pdfft?md5=9a8702c0da47a6675d129fd9832b8b4f&pid=1-s2.0-S2666032623000522-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved semi-empirical formulae for Beta-decay\",\"authors\":\"Reddi Rani L. , H.S. Anushree , H.C. Manjunatha , N. Sowmya , L. Seenappa , K.N. Sridhar , P.S. Damodhara Gupta\",\"doi\":\"10.1016/j.physo.2023.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We attempted to improve semi-empirical equations for <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay in the atomic number range <span><math><mrow><mn>1</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>42</mn></mrow></math></span> and mass number range <span><math><mrow><mn>3</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>118</mn></mrow></math></span>. We suggested a semi-empirical formula in terms of an atomic number of daughter nuclei and decay energy in keV. We divided the nuclei into four categories: even(Z)-even(N), even(Z)-odd(N), odd(Z)-even(N), and odd(Z)-odd(N) to propose improved semi-empirical formulae. The existing equation values are compared to the experimental results. When compared to other semi-empirical equations accessible in the literature, the standard deviation produced from the current formula is lower. The improved semi-empirical formulas are of the first kind, requiring only an atomic number of daughter and decay energy during <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay. This study discovers a significance in predicting <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"17 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000522/pdfft?md5=9a8702c0da47a6675d129fd9832b8b4f&pid=1-s2.0-S2666032623000522-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We attempted to improve semi-empirical equations for -decay in the atomic number range and mass number range . We suggested a semi-empirical formula in terms of an atomic number of daughter nuclei and decay energy in keV. We divided the nuclei into four categories: even(Z)-even(N), even(Z)-odd(N), odd(Z)-even(N), and odd(Z)-odd(N) to propose improved semi-empirical formulae. The existing equation values are compared to the experimental results. When compared to other semi-empirical equations accessible in the literature, the standard deviation produced from the current formula is lower. The improved semi-empirical formulas are of the first kind, requiring only an atomic number of daughter and decay energy during -decay. This study discovers a significance in predicting -decay.